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Abstract. We prove that all p-adic period domains (and their non-
minuscule analogues) are geometrically connected. This answers a ques-
tion of Hartl [Har13] and has consequences to the geometry of Shimura
and local Shimura varieties.
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1. Introduction

Period domains and their geometric properties are recurring themes in
analytic geometry when studying Shimura varieties and their p-adic uni-
formization. They are analytic open subsets of flag varieties of reductive
groups arising as the image of the Grothendieck–Messing period morphism,
which stems from the theory of p-divisible groups. The first instance of pe-
riod domains in the literature is due to Drinfeld [Dri76], who introduced the
Drinfeld upper half-space Ωn, and was later complemented by Gross–Hopkins
[HG94], who treated the period morphism for the Lubin–Tate tower. How-
ever, the first rigorous definition of p-adic period domains in terms of weakly
admissible and admissible loci was given in the seminal book of Rapoport–
Zink [RZ96], which initiated their systematic study. Since then, additional
significant contributions to the field include the works of Hartl [Har08],
Rapoport–Viehmann [RV14], Scholze–Weinstein [SW13, SW20], and Chen–
Fargues–Shen [CFS21]. We also refer to the book of Dat–Orlik–Rapoport
[DOR10] for a detailed introduction to the subject replete with examples.

The purpose of this article is to prove that p-adic period domains are geo-
metrically connected. Our results answers a conjecture of Hartl, see [Har13,
Conjecture 6.5]. It is also a key ingredient for p-adic uniformization of New-
ton strata on Shimura varieties. For a long time, it was common in the
literature to assume that the coweight µ bounding the p-adic shtukas is
minuscule, see for instance Rapoport–Zink [RZ96] or Rapoport–Viehmann
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2 I. GLEASON, J. LOURENÇO

[RV14], because otherwise there was no hope of obtaining a moduli space
representable by rigid-analytic spaces. We do not make any such assump-
tion in this paper, since we can work entirely within the theory of diamonds
[Sch17], following Scholze–Weinstein [SW20].

We consider a p-adic shtuka datum (G, b, µ) in the sense of Rapoport–
Viehmann [RV14, Definition 5.1] but dropping the minuscule assumption on
µ, compare with [SW20, Definition 23.1.1]. This consists of a reductive group
G over Qp, an element b of the Kottwitz set B(G) = G(Q̆p)/adϕ(G(Q̆p))
in the sense of Kottwitz [Kot85], and a geometric conjugacy class of (not
necessarily minuscule) cocharacters µ ∈ Hom(Gm, GQ̄p)/ad(G(Q̄p)), such
that b ∈ B(G,µ). Let E over Qp be the reflex field of µ, i.e. the finite field
extension over which the conjugacy class of µ is defined. We let Cp denote
a completed algebraic closure of Qp, Ĕ ⊆ Cp denote the compositum of E
and Q̆p in Cp, and Γ denote the absolute Galois group of Qp.

Given a characteristic p perfectoid space S, one can construct functorially
a G-bundle over the relative Fargues–Fontaine curve XFF,S which we denote
by Eb. Attached to (G,µ) one can define a spatial diamond GrG,µ over
Spd Ĕ that parametrizes B+

dR-lattices with G-structure bounded by µ in the
Bruhat order [SW20, §§19-22]. Moreover, using Beauville–Laszlo descent one
can identify GrG,µ with the moduli space of G-bundle modifications of Eb

GrG,µ(S) = {(E , f) | f : E 99K Eb, rel(f) ≤ µ}/ ∼=
whose relative position is bounded by µ. This gives a Beauville–Laszlo uni-
formization map:

BLb : GrG,µ → BunG

(E , f) 7→ E .
Here BunG denotes the small v-stack of G-bundles on the Fargues–Fontaine
curve as in the book of Fargues–Scholze [FS21]. Let Bun1

G denote the
sub-v-stack of BunG of those G-bundles that are fiberwise trivial [FS21,
§III.2.3]. By [SW20, Corollary 22.5.1, Proposition 24.1.2], the b-admissible
locus, GrbG,µ := BL−1

b (Bun1
G), is non-empty and open in GrG,µ.1

When µ is minuscule andG is quasi-split we have an identification GrG,µ =

(G/Pµ)♦, where Pµ is the parabolic subgroup defined by µ. In this case,
GrG,µ is (the diamond attached to) a generalized flag variety (see [AGLR22,
§2.2] for a discussion of the diamond functor). Moreover, we also have a
formula:

GrbG,µ = πGM(M♦(G,b,µ))

Where M(G,b,µ) is the local Shimura variety attached to (G, b, µ) and πGM

is the Grothendieck–Messing period morphism [RV14, SW20]. By [Sch17,
Lemma 15.6] GrbG,µ is the diamond associated to a unique analytic open

1We warn the reader that in some literature GrbG,µ denotes BL−1
1 (BunbG) instead.
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subset of G/Pµ that we denote by F(G, b, µ)a. This open subset is the p-
adic period domain associated to (G, b, µ), and GrbG,µ = F(G, b, µ)a,♦. Our
main theorem is the following:

Theorem 1.1. The map GrbG,µ → Spd Ĕ has connected geometric fibers.
Moreover, GrbG,µ ⊂ GrG,µ is geometrically dense as spaces over Spd Ĕ.

Let us put Theorem 1.1 in context. In [Kis17] Kisin uses in an essential
way the connected components of affine Deligne–Lusztig varieties (ADLV)
to study the Langlands–Rapoport conjecture for integral models of Shimura
varieties [LR87]. On the other hand, in [Che14] Chen uses the connected
components of ADLV to derive her main results on connected components
of local Shimura varieties (LSV). These two works motivated Chen–Kisin–
Viehmann [CKV15] to compute the connected components of ADLV at hy-
perspecial parahoric level building on previous work of Viehmann [Vie08].
Since then, several authors have pushed the strategy of [CKV15] to compute
connected components of ADLV deriving as corollaries results on the geom-
etry of integral models of Shimura varieties (see the following results of Nie
[Nie18, Theorem 1.1], He–Zhou [HZ20, Theorem 0.1], Hamacher [Ham20,
Theorem 1.1(3)], Nie [Nie21, Theorem 0.2]).

Now, Chen proves and uses a version of Theorem 1.1 for period domains
that arise from unramified Rapoport–Zink data as a key stepping stone to
derive the main results in her work. This is where the connected components
of ADLV enter in her argument. In [GLX22], the first author together with
Lim and Xu show that Chen’s reasoning can be reversed, and use Theo-
rem 1.1 to compute the connected components of ADLV and the connected
components of LSV [GLX22].

Let us fix some notation. Let I denote an Iwahori group scheme over Zp
with generic fiber G. Let ϕ denote the canonical lift of arithmetic Frobenius
to Z̆p. Let Adm(µ) ⊆ I(Z̆p)\G(Q̆p)/I(Z̆p) denote the µ-admissible set of
Kottwitz–Rapoport [KR00]. Let

Xµ(b) = {gI(Z̆p) | g−1bϕ(g) ∈ I(Z̆p) Adm(µ)I(Z̆p)}. (1.1)

This is the closed affine Deligne–Lusztig variety attached to (G, b, µ, I). It
admits the structure of a perfect scheme locally perfectly of finite presenta-
tion [Zhu17], [BS17]. Let κG : G(Q̆p) → π1(G)I denote the Kottwitz map
[Kot97, 7.4]. The map κG induces a map ωG : π0(Xµ(b)) → π1(G)I that
factors through a unique coset cb,µπ1(G)ϕI ∈ π1(G)I/π1(G)ϕI . Here is an
interesting consequence of our main theorem.

Corollary 1.2. The Kottwitz map induces a bijection

ωG : π0(X
Kp
µ (b))

∼=−→ cb,µπ1(G)ϕI , (1.2)

whenever (b, µ) is HN-irreducible.
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Our work, together with [GLX22], finishes the problem of computing con-
nected components of ADLV in mixed characteristic.

Let us sketch the proof of our main theorem in the case where G is quasi-
split. Fix a Borel B ⊆ G. When b is basic Theorem 1.1 can be proved
directly, and it is an unpublished result of Hansen–Weinstein. Suppose that
b is not basic and let P ⊆ G be the parabolic generated by B and the
centralizer of νb.

To prove that a space is connected it suffices to prove that a dense subset
of it is connected, this allows us to replace GrG,µ by the dense open subset
L+P · ξµ. Now, by Beauville–Laszlo descent, L+P · ξµ gets identified with
the space of modifications of EPb , where EPb is the Harder–Narasimhan P -
reduction of Eb. Moreover, on this open subset we have a factorization:

BLb : L+P · ξµ
BLP,b−−−→ BunP → BunG.

Recall the following general fact. Let X be a connected locally spatial dia-
mond that is smooth and partially proper over SpaCp. Suppose we have an
open immersion j : U → X and complementary closed immersion i : Z → X.
For U to be connected, it suffices that dim(Z) < dim(X) by [Han21, Corol-
lary 4.11]. In our case X = L+P · ξµ and U = L+P · ξµ ∩ BL−1

b (Bun1
G). An

important observation is that the non-empty fibers of BLP,b are AutFil(Eb)-
torsors, see Lemma 3.3. In particular, they all have the same dimension.
Also, BLP,b factors through one connected component BunκP ⊆ BunP deter-
mined by µ− νb.

Let Y = BunκP \ BL
−1
b (Bun1

G). The second key point is that dim(Y ) <
dim(BunκP ). To prove this, we study the following diagram:

BunbMP BunP BunG

BunbMM BunM

(1.3)

where M is the Levi quotient of P , bM ∈ B(M) and the square is Cartesian.
When bM is basic and νbM is G-dominant, BunbMP → BunG is smooth and
dimensions are easy to understand. On the other hand, the case when bM is
basic and νbM is a non-negative sum of positive coroots, i.e. νbM ∈ Q≥0Φ+

G,
can be understood inductively from the case where νbM is G-dominant. This
is where b ∈ B(G,µ) is important. Indeed, in this case µ� − νb is in Q≥0Φ+

G

and the relevant bM ∈ B(M)basic satisfies that νbM is also in Q≥0Φ+
G.

We now explain the organization of this article. We start §2 with some
cohomological considerations that allow us to work with the notion of dimen-
sion in a meaningful way. Then, we make some preparations explaining the
combinatorics involving the induction process that reduces the νbM ∈ Q≥0Φ+

G
case to the G-dominant case. Afterwards, we bound dimensions of Newton
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strata that arise from the diagram 1.3. Finally, §3 is dedicated to proving
Theorem 1.1.
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2. Bounding dimensions of Newton strata.

2.1. Dimension for stacky maps. In the following sections we bound the
dimensions of certain Artin v-stacks. Since we do not intend to develop
foundations, we will work with an ad-hoc notion of dimension. Let f : X →
Y be a fine morphism of Artin v-stacks [GHW22, Definition 1.3] and let
n ∈ N. Let S → Y be a map with S a spatial diamond, let fS : XS → S
denote the base change, and let F ∈ D≤0

ét (XS ,F`).

Definition 2.1. We say that the `-cohomological dimension of f is bounded
by n, which we abbreviate as dim`(f) ≤ n if: for all S → Y and F as above:

fS,!F ∈ D≤2n
ét (S,F`), (2.1)

and we write dim`(X) ≤ n when Y = ∗.
Convention 2.2. From now on we will only consider maps of Artin v-stacks
that are fine and we will not include this adjective in our statements.

Actually, the stacky morphisms used in this article are all obtained as
compositions of smooth maps and locally closed immersions which are all
fine morphisms.

Lemma 2.3. Let f : X → Y and g : Y → Z be map of Artin v-stacks such
that dim`(f) ≤ n and dim`(g) ≤ m. Then dim`(g ◦ f) ≤ m+ n.

Proof. Let S → Z be a map and denote by XS and YS the base changes.
Let F ∈ D≤0

ét (XS ,F`). Observe that fS,!F [2n] ∈ D≤0
ét (YS ,F`), which implies

that g!,SfS,!F [2n] ∈ D≤2m(S,F`). It follows that dim`(g ◦ f) ≤ n+m. �

Lemma 2.4. Let f : X → Y be a map of Artin v-stacks. Suppose that for
any s : Spa(C,C+)→ X the fibers satisfy dim`(Xs) ≤ n. Then dim`(f) ≤ n.
Proof. This follows from [Sch17, Theorem 1.9.(2)], [GHW22, Theorem 1.4.(4)],
since F ∈ D≤2n

ét (S,F`) can be checked on geometric point. �

Lemma 2.5. Let f : X → Y be a surjective `-cohomologically smooth map
of Artin v-stacks with constant `-dimension d. Let g : Y → Z be a map of
Artin v-stacks. Then dim`(g) ≤ n if and only if dim`(g ◦ f) ≤ n+ d.
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Proof. To bound dim`(g◦f) it suffices by Lemma 2.3 to prove dim`(f) ≤ d. It
suffices to prove that RHom(fS,!F ,G) = 0 for every map S → Y , every object
G ∈ D≥2d+1

ét (S,F`) and every object F ∈ D≤0
ét (X,F`). By adjunction, we

may prove RHom(F , f !
SG) = 0 instead. Now, by `-cohomological smoothness

f !G = f∗G⊗f !F` and f !F` is an invertible object in Dét(X,F`) concentrated
in degree −2d. In particular, f !

SG ∈ D
≥1
ét (X,F`) while F ∈ D≤0

ét (XS ,F`).
To prove dim`(g) ≤ n, let S → Z a map with S a spatial diamond, let

F ∈ D≤0
ét (YS ,F`) and let G ∈ D≥2n+1

ét (S,F`). As above, it suffices to prove:

RHom(F , g!
SG) = 0 (2.2)

In other words, we wish to prove that g!
SG ∈ D≥1

ét (YS ,F`), for all G ∈
D≥2n+1

ét (S,F`). This can be verified on geometric points so we may show

f∗Sg
!
SG ∈ D

≥1
ét (XS ,F`) (2.3)

instead, since fS is surjective. By smoothness, f !
SF` ∈ D

−2d
ét (XS ,F`) is an

invertible object and f∗Sg
!
SG = f !

Sg
!
SG ⊗ (f !

SF`)−1. Since, by assumption
f !
Sg

!
SG ∈ D

≥1−2d
ét (XS ,F`), we can verify that 2.3 holds. �

Lemma 2.6. Let f : X → Y be a map of Artin v-stacks. Let i : Z →
X be a closed immersion and let j : U → X denote the complementary
open immersion. Suppose that dim`(i ◦ f) ≤ n and that dim`(j ◦ f) ≤ n,
then dim`(f) ≤ n. Conversely if dim`(f) ≤ n then dim`(i ◦ f) ≤ n and
dim`(j ◦ f) ≤ n.

Proof. Notice that the fibers of j and i are 0-dimensional. By Lemma 2.3 the
second claim follows. For the first claim, let F ∈ D≤0

ét (X,F`), and consider
the following distinguished triangle:

f!j!j
∗F → f!F → f!i∗i

∗F → f!j!j
∗F [1] (2.4)

We may pass to geometric fibers, where one of the terms vanish. �

2.2. Averages of coweights. Let G be a quasi-split reductive group over
Qp and let T ⊂ B ⊂ G be a pair consisting of a maximal torus that is
maximally Qp-split and a Borel both defined over Qp. Let ΦG be the absolute
root system of G with respect to T and ∆G the basis of positive simple
absolute roots with respect to B. We let X∗(T ) denote the set of geometric
cocharacters and denote by X∗(T )Q and X∗(T )R the resulting rational vector
space. We use the symbol M to denote a standard Levi of G defined over
Qp, and by ∆M the induced base of positive simple roots.

Definition 2.7. We say that ν ∈ X∗(T )Q isM -dominant (resp. M -central)
if 〈α, ν〉 ≥ 0 (resp. 〈α, ν〉 = 0) for all α ∈ ∆M and denote by X∗(T )+M

Q the
convex set of M -dominant vectors in X∗(T )Q.
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Following [Sch22], we now define the so called M -average of ν:

avM (ν) =
1

|WM |
∑

w∈WM

wν (2.5)

where WM denotes the absolute Weyl group of M .

Lemma 2.8. The M -average avM (ν) is the unique M -central µ ∈ X∗(T )Q
whose difference µ− ν is spanned by ∆∨M .

Proof. Notice that avM (ν) is WM -invariant by definition. Also, a vector is
WM -invariant if and only if it is M -central. �

It also follows that 〈2ρG−2ρM , ν〉 = 〈2ρG−2ρM , avM (ν)〉. We study how
averaging interacts with the notion of positivity presented below.

Definition 2.9. We say that ν ∈ X∗(T )Q is non-negative if it belongs to the
convex hull of X∗(ZG)Q and Q≥0α

∨, where ZG is the center of G and α runs
over ∆G. The convex set of non-negative vectors is denoted by X∗(T )≥0

Q .

Our definition above corresponds to the inequality νad ≥ 0 in the usual
Bruhat order of X∗(Tad), where Tad denotes the image of T in the adjoint
group Gad of G. A dominant vector is necessarily non-negative, but the
converse rarely ever holds. In the following, we note that averaging preserves
non-negativity, compare with [Sch22, Lemma 3.1].

Proposition 2.10. The function avM preserves X∗(T )≥0
R .

Proof. It suffices to see that it preserves X∗(ZG)Q and Q≥0α
∨. This is clear

forM -central coweights, so it suffices to consider avM (α∨) for α ∈ ∆G \∆M .
But then wα∨ is a positive coroot for all w ∈ WM , thereby finishing the
proof. �

Remark 2.11. If G = GLn, we may interpret ν as a polygon and its non-
negativity as meaning the polygon never crosses the straight line connecting
its extremities. The vector avM (ν) corresponds to connecting vertices ac-
cording to a partition of n. In this case, it is visually clear that this partial
average polygon lies above the total average polygon, since we started with
a non-negative one.

As a corollary, we get the following technical result that is relevant in the
next subsection:

Lemma 2.12. Let ν ∈ X∗(T )≥0
Q be invariant under Γ and M -central. There

is a sequence of standard Levi subgroups M = M0 ⊂ · · · ⊂Mi ⊂ · · · ⊂Mk =
G defined over Qp and also of Γ-invariant vectors ν = ν0, . . . , νi, . . . νk =

avG(ν) in X∗(T )≥0
Q such that the following properties hold

(1) νj = avMj (νi) for j ≥ i.
(2) νi is Mi+1-dominant.
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Proof. Suppose 〈α, ν〉 ≤ 0 for all α ∈ ∆G \∆M . Since 〈α, ν〉 = 0 for α ∈ ∆M

by hypothesis, we also get 〈ρG, ν〉 ≤ 0. On the other hand, the convex
hull of X∗(ZG)Q and Q≥0α

∨ for all α ∈ ∆G pairs non-negatively with the
strictly dominant weight ρG, and it vanishes exactly on G-central elements.
Therefore, the only possibility would be M = G, in which case k = 0.

Otherwise, there exists some α ∈ ∆G \ ∆M such that 〈α, ν〉 > 0. By
Γ-invariance, this holds for its entire Γ-orbit. Now let L be the standard
Levi defined over Qp with ∆L = ∆M ∪ Γα and consider avL(ν). By Propo-
sition 2.10 avL(ν) is non-negative and L-central, which finishes the proof of
the lemma by induction on the cardinality of ∆G \∆M . �

2.3. Newton strata in BunP . We let M denote the set of standard Levi
subgroups of G containing T . Let B(M) denote the set of pairs {(M, bM )}
where M ∈M and bM ∈ B(M). For all M ∈M, we have B(M) ⊂ B(M).

Fix b ∈ B(M) with b = (M, bM ) and let P = MB denote the standard
parabolic containing B and with standard LeviM . We let νb ∈ (X∗(T )⊗Q)Γ

denote theM -dominant Newton point of bM . ForM ⊆ L we let PL := P ∩L
and define BunbPL by the following diagram with Cartesian square:

BunbPL BunPL BunL

BunbMM BunM

(2.6)

Theorem 2.13 (Hamann). The map of Artin v-stacks BunPL → BunM is `-
cohomologically smooth. In particular, BunbPL → BunbMM is `-cohomologically
smooth. Moreover, the later map is of relative `-dimension 〈2ρL − 2ρM , νb〉.

Proof. This follows from [Ham22, Proposition 3.16, Proposition 4.7]. �

When M ⊆ L we let iL(b) denote the pair (L, bM ) and aL(b) denote the
pair (L, bL) where bL is the unique basic element in B(L) with the same
image image under the Kottwitz map, i.e. with κL(bL) = κL(bM ). One
verifies that avL(νb) = νaL(b), and consequently:

〈2ρL − 2ρM , νb〉 = 〈2ρL − 2ρM , νaL(b)〉.

Definition 2.14. We say that b ∈ B(M) is basic if bM ∈ B(M) is basic. We
say that b ∈ B(M) is dominant if νb is G-dominant. We say that b ∈ B(M)
is non-negative if νb lies in the monoid generated by X∗(ZG)Γ

Q and Q≥0α
∨

for every α ∈ ∆G.

Notice that if b is basic and dominant then BunbP = Mb, the Fargues–
Scholze chart attached to iG(b) ∈ B(G) [FS21, §V.3]. Also, if b is basic and
anti-dominant BunbP → BunG induces an isomorphism BunbP

∼= BunbG.
Let g ∈ B(M) with g = (Lg, gL) and M ⊆ Lg. Let Lg ⊆ L and let

Bun
(b,g)
PL

:= ∆−1
M,Lg

(BunbMM × BungLLg) ⊆ BunPL (2.7)
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Here ∆M,Lg : BunPL → BunM × BunLg is the composition of BunPL →
BunPLg and the diagonal map BunPLg → BunM × BunLg .

Proposition 2.15. If b ∈ B(M) is basic and non-negative, then BunbP
contains an open subspace Tb ⊂ BunbP such that fb : Tb → BunG is `-
cohomologically smooth of relative dimension 〈2ρG − 2ρM , νb〉. Moreover, fb
factors through Bun

aG(b)
G and dim`(BunbP \ Tb) < 〈2ρG − 2ρM , νb〉.

Proof. We do this by induction on the cardinality of ∆G \∆M . If b is basic
and dominant then BunbP → BunG is smooth by [FS21, Theorem V.3.7] and
with notation as in eq. (2.7) Tb = Bun

(b,aG(b))
P satisfies the desired properties.

We may choose L = M1 as in the statement of Lemma 2.12. We let Q ⊂ G
denote the parabolic generated by L and B and we let PL = L∩P . We have
the following commutative diagram with Cartesian squares:

BunbP BunP BunQ BunG

BunbPL BunPL BunL

BunbMM BunM

(2.8)

After pullback by BunbLL → BunL, and by induction, we get a commutative
diagram in which Tb is defined so that all squares are Cartesian:

Tb Bun
(b,aL(b))
P BunbP BunbPL

TaL(b) Bun
aL(b)
Q BunQ BunL

(2.9)

By induction, the map TaL(b) → BunG is `-cohomologically smooth and
Tb → TaL(b) is also `-cohomologically smooth, so the same holds for their
composition. The claim on dimensions follow since BunG → ∗ is `-smooth
of dimension 0 and BunbP → ∗ is `-smooth of dimension 〈2ρG − 2ρM , νb〉.

For the second claim, let g ∈ B(L) be in the image of BunbPL . We get
a smooth map Bun

(b,g)
P → BungQ of `-dimension 〈2ρL − 2ρM , νb〉. By Theo-

rem 2.13, the map BungQ → BungL is smooth and it has `-dimension 〈2ρG −
2ρL, νg〉. Now, 〈2ρG − 2ρL, νg〉 = 〈2ρG − 2ρL, νb〉, since κL(b) = κL(g). In
particular, Bun

(b,g)
P → BungQ → BungL is smooth of relative dimension 〈2ρG−

2ρM , νb〉. Now, when g 6= aL(b), dim`(BungL) < 0, so that by Lemma 2.3 and
Lemma 2.6 dim`(Bun

(b,g)
P ) < 〈2ρG−2ρM , νb〉 and dim`(BunbP \Bun

(b,aL(b))
P ) <

〈2ρG−2ρM , νb〉. By induction, dim`(Bun
(b,aL(b))
P \Tb) < 〈2ρG−2ρM , νb〉 since

Bun
(b,aL(b))
P \ Tb → Bun

aL(b)
Q \ TaL(b) is smooth. By Lemma 2.6, dim`(BunbP \
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Tb) < 〈2ρG − 2ρM , νb〉, since we have an open and closed decomposition
BunbP \ Tb = (Bun

(b,aL(b))
P \ Tb) ∪ (BunbP \ Bun

(b,aL(b))
P ). �

3. GrbG,µ is connected

Contrary to the previous section we will momentarily not assume that G
is quasi-split. Fix C an algebraically closed non-Archimedean field extension
of Ĕ and recall the Beauville–Laszlo map from the introduction

BLb : GrG,µ → BunG, (3.1)

where we base change the affine Grassmannian to SpdC. Observe that BLb
factors through the unique connected component of BunG parametrized by
µ\ − κG(b) ∈ π1(G)Γ. We formulate Theorem 1.1 as follows:

Theorem 3.1. If b ∈ B(G,µ), then GrbG,µ is dense in GrG,µ and connected.

Without loss of generality we may assume that G is adjoint. Moreover,
we may replace G by its quasi-split inner form G∗, which is now a pure inner
form by adjointness of G. In total, we may assume that G is quasi-split, at
the expense of having to prove the more general Theorem 3.2 below.

Let us recall the setup. Let T ⊂ B ⊂ G = G∗ be as in the previous
section. We define an element µ� ∈ X∗(T )Γ

Q given by the formula:

µ� :=
1

[Γ : Γµ]

∑
γ∈Γ/Γµ

γ(µ), (3.2)

where Γµ denotes the stabilizer of µ for the Γ-action. Notice that 〈2ρG, µ�〉 =
〈2ρG, µ〉, because ρG is Γ-invariant.

Let AZ(G,µ) ⊂ B(G) be the set of acceptable elements modulo center,
i.e. for which µ� − νb is non-negative as in Definition 2.14. This is related
to the notion of acceptable elements A(G,µ) of [RV14, Definition 2.3], in
the sense that AZ(G,µ) equals the pre-image of A(Gad, µad) along B(G)→
B(Gad).

If b ∈ B(M), we let dMµ,b denote the unique basic element in B(M) such
that κM (dMµ,b) = µ\ − κM (b). When M = G we simply write bµ for dGµ,b. Let

d = dim`(GrG,µ) = 〈2ρG, µ〉 and let Gr
(g,b)
G,µ := BL−1

b (BungG) ⊂ GrG,µ. For

example, GrbG,µ = Gr
(1,b)
G,µ .

Theorem 3.2. If b ∈ AZ(G,µ), then Gr
(bµ,b)
G,µ is dense in GrG,µ and con-

nected.

Proof. To prove that Gr
(bµ,b)
µ is dense and connected, it suffices to prove that

dim`(Gr
(g,b)
µ ) < d for all g ∈ B(G) with g 6= bµ. We consider the Schubert

cell Gr◦G,µ ⊂ GrG,µ. Since dim`(GrG,µ \ Gr◦G,µ) < d it suffices to prove that
dim`(Gr

(g,b)
G,µ ∩ Gr◦G,µ) < d. If b is basic, BLb : [G(Qp)\Gr◦G,µ] → BunG

is smooth of relative dimension d [FS21]. In particular, dim`(Gr
◦,(g,b)
G,µ ) =
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d + dim`(BungG). Now, bµ is the unique basic element in the image of BLb
and for non-basic elements dim`(BungG) < 0. This finishes the proof in this
case.

Suppose now that b is not basic, let M denote the centralizer of νb, let
bM denote the unique element in B(M) mapping to b whose Newton point
is G-antidominant. Now, BunbMP

∼= BunbG by our choice of bM , and we let
EPb denote the unique P -reduction of Eb determined by the image of BunbMP
in BunP . The space of modifications of EPb gets identified with GrP ⊂ GrG.
We consider Gr◦P,µ := L+P · ξµ, the result of intersecting GrG,µ with the
connected component of GrP attached to the dominant representative µ. We
have a smooth map Gr◦P,µ → Gr◦M,µ of relative dimension 〈2ρG − 2ρM , µ〉.
Moreover, we have a commutative diagram:

Gr
dMµ,b
P,µ Gr◦P,µ Gr◦G,µ

Bun
dMµ,b
P BunP BunG

Bun
dMµ,b
M BunM

BLb

(3.3)

Where Gr
dMµ,b
P,µ is defined so that the square in the left-upper corner is Carte-

sian. In particular, the upper left arrow is an open immersion. Since
dMµ,b ∈ B(M) is basic, we know that

dim`(Gr◦P,µ \Gr
dMµ,b
P,µ ) < d. (3.4)

It suffices to prove that

dim`(Gr
dMµ,b
P,µ ∩Gr

(g,b)
G,µ ) < d (3.5)

for g 6= bµ. By Proposition 2.15,

dim`(Bun
(dMµ,b,g)

P ) < 〈2ρG − 2ρM , νdMµ,b
〉 = 〈2ρG − 2ρM , avM (µ� − νb)〉 (3.6)

By Lemma 3.3, the geometric fibers of

Gr
dMµ,b
P,µ → Gr◦M,µ ×BunM Bun

dMµ,b
P (3.7)

have all dimension bounded by 〈2ρG−2ρM , νb〉. Consequently by Lemma 2.4,

we get that (3.5) holds. Indeed, dim`(Gr
dMµ,b
P,µ ∩ Gr

(g,b)
G,µ ) is bounded by the

dimension of Gr◦M,µ ×BunM Bun
(dMµ,b,g)

P and the dimension of the fiber. The
former is smaller than 〈2ρM , µ〉+ 〈2ρG−2ρM , avM (µ�−νb)〉 and the later is
〈2ρG−2ρM , νb〉. Moreover, 〈2ρG−2ρM , avM (µ�−νb)〉 = 〈2ρG−2ρM , µ

�−νb〉
and 〈2ρG − 2ρM , µ

�〉 = 〈2ρG − 2ρM , µ〉. �
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Lemma 3.3. The geometric fibers of (3.7) are either Autunip
Fil (Eb)-torsors or

empty. Their dimension is 〈2ρG − 2ρM , νb〉 in the former case.

Proof. We begin by observing that the geometric fibers of the Beauville–
Laszlo map GrP → BunP are torsors on the left for the group A−1P (Be)A
where A ∈ P (BdR) is the Beauville–Laszlo glueing data for the P -torsor EPb
[SW20, Theorem 13.5.3.(2)]. Similarly, the geometric fibers of GrM → BunM
are A−1M(Be)A-torsors. We deduce that the non-empty geometric fibers of
GrP → BunP ×BunM GrM are torsors under the group A−1U(Be)A.

Recall that every t ∈ P (BdR) has a unique expression t = ut · mt with
u ∈ U(BdR) and m ∈M(BdR). We claim that if t ∈ P (B+

dR)ξµP (B+
dR) then

ut ∈ U(B+
dR). This follows from the normality of U(B+

dR) in P (B+
dR) and

from the inclusion ξµU(B+
dR) ⊆ U(B+

dR)ξµ, which follows from the fact that
µ was assumed to be dominant. Consequently, if u ∈ U(BdR), x ∈ Gr◦P,µ are
such that u · x ∈ Gr◦P,µ, then we conclude that necessarily u ∈ U(B+

dR).
This implies that the non-empty geometric fibers of our map (3.7) form

a torsor under the group U(B+
dR) ∩ A−1U(Be)A = Autunip

Fil (Eb). By [FS21,
Proposition III.5.1] dim`(Autunip

Fil (Eb)) = 〈2ρG − 2ρM , νb〉, and we may con-
clude the same about the non-empty fibers. �
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