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Abstract. We derive a Serre presentation of distribution algebras of loop groups
in characteristic p and apply it to give a new proof of the normality of Schubert
varieties inside parahoric affine Grassmannians, for all connected reductive groups
whose fundamental group is p-torsion free.

Contents

1. Introduction 1
2. Affine Grassmannians 3
3. Distributions 11
References 20

1. Introduction

Let F be a field of characteristic p and G be a connected reductive group over F . If
we want to understand the infinitesimal behavior of G near the identity, it is well known
from modular representation theory that Lie(G) is insufficient. Indeed, the category
of Lie(G)-modules barely captures information on the category of G-representations.
Instead, what one ought to consider is the F -algebra Dist(G) of distributions of G at the
origin consisting of higher differential operators. This object is a sort of twisted divided
power algebra and an explicit presentation in terms of generators and relations was given
by Takeuchi [Tak83a, Tak83b] for split G. The idea for producing these generators and
relations is to take the distributions of tori and root groups and evaluating on the rules
of multiplications between those subgroups of G. In particular, the list of relations is not
finite, and is best expressed in terms of generating series.

The point of Dist(G) is that it carries the same information as the formal group Ĝ
given as the completion of G at the origin but in such a way that we get a covariant
algebra object instead of a covariant geometric space (or contravariant algebra object
by passing to formal sections). We became interested in it because of how it naturally
fits into the study of loop groups. Assume from now on that F = k((t)) is a local field
with finite residue field k. The loop group of G is the group object in ind-schemes
RF/kG whose functor of points is given by R 7→ G(R((t))). Similarly, if we let G be a
parahoric model of G over the ring of integers O = k[[t]] in the sense of Bruhat–Tits
[BT72, BT84], then we have the group object RO/kG in schemes given by R 7→ G(R[[t]]).
The affine flag variety GrG is the étale quotient RF/kG/RO/kG in the category of ind-
schemes and classifies modifications of G-torsors over O away from the residue field k.
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The Bruhat stratification yields Schubert varieties GrG,l,≤w defined over the reflex field l
of the element w in the absolute Iwahori–Weyl group.

Theorem 1.1. If p - #π1(Gder), then GrG,l,≤w is normal, Cohen–Macaulay, rational and
globally +-regular.

This result appears already in [Fal03, PR08, FHLR22] for every group except odd
unitary ones if p = 2. The point of this paper is to give a new uniform proof, so first we
have to review the history behind it. Faltings [Fal03] proved the theorem for split groups
and his proof had two steps: (i) applying the Mehta–Ramanathan criterion [MR85] on
ϕ-split varieties, where ϕ denotes the Frobenius map, to show that the transition maps
of normalized Schubert varieties are closed immersions; (ii) use integral Lie-theoretic
arguments to prove that the embedded Schubert varieties are already normal. For non-
tame G, we face the following obstacles: (i) demands a divisor on GrG with specific
degrees, usually defined via negative loop groups, which do not seem to exist beyond the
tame case; (ii) requires an integral lift of the group theoretic data to a two dimensional
ring such as W (k)[[t]], which does not seem to exist for odd unitary groups if p = 2.

A non-negligible portion of our research was dedicated to overcome some of the above
obstacles. First, we show in [HLR18] that most Schubert varieties are not normal if
p | #π1(Gder), see [BR23] for the full classification at hyperspecial level. As for tameness,
we lifted it almost completely in [Lou23, FHLR22] as follows. For part (i), we retrieve the
critical divisors for all groups by a reduction to the split case, still relying on a case-by-
case analysis. For part (ii), we constructed W (k)-lifts for all groups except odd unitary
ones when p = 2, and could finish Faltings’ proof of embedded normality.

Since then, we found an alternative approach to (i). In [CL24] we replace the Mehta–
Ramanathan criterion [MR85] for ϕ-splitness by the Bhatt criterion [Bha12] for splinters,
also known as globally +-regular varieties in [BMP+23]. This criterion involves choosing
auxiliary Q-Cartier boundaries inside Demazure varieties but does not require defining
Cartier divisors in GrG . This gives a uniform proof of part (i) for all G. Improving the
strategy for part (ii) is the goal of this paper: we want to explain a new method that
uniformly proves embedded normality for all groups.

At this point, the reader probably already guessed how distributions fit into the nor-
mality picture. The main idea is that the integral Lie algebra methods should be replaced
by dealing directly with the associative k-algebra Dist(RF/kG) of loop distributions. This
algebra carries a natural topological structure, so we use the formalism of condensed
mathematics of Clausen–Scholze [CS19]. We define a Serre presentation for Dist(RF/kG)
following [Tak83a, Tak83b] to reduce to rank 1 groups. If G is a restriction of scalars of
SL2, we can make the calculations explicitly, as its Schubert varieties are lci. If G is a
restriction of scalars of SU3, we couldn’t perform the calculations effectively, so instead
more effort is required via the theory of local models, which we explain next.

Beilinson–Drinfeld [BD91] attach a more general loop group RO2
◦/O
G to the parahoric

model G, where the restriction of scalars is along the inclusion of the second factor in
the complement of the diagonal of O, and the G-structure is along the first factor. It
carries the jet subgroup RO2/OG and the étale quotient GrG,O is called the Beilinson–
Drinfeld Grassmannian. Its generic fiber is isomorphic to the usual affine Grassmannian
GrG,F of the F -group G, whereas the special fiber equals GrG,k. Let GrG,OE ,≤µ be the
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scheme-theoretic image of GrG,E,≤µ → GrG,OE , where µ is a conjugacy class of absolute
coweights of G and E is its reflex field.

Theorem 1.2. If p - #π1(Gder), then GrG,OE ,≤µ is normal and Cohen–Macaulay with
ϕ-split special fiber.

Again the proof of Theorem 1.2 can be found in [Zhu14, FHLR22] if p > 2 or G is
SU3-free. Zhu [Zhu14] handles tamely ramified groups via a global ϕ-splitting, which we
cannot generalize to all G. Instead, we prove it via the unibranch theorem of [GL22]
together with Theorem 1.1. We also use GrG,O to finish the proof of Theorem 1.1 when
G = SU3. If G is a special parahoric with simply connected reductive quotient, then
Dist(RO2

◦/O
G) is generated by its unipotent part. Using the case of SL3 in the generic

fiber, this implies semi-normality of GrG,O and hence also of its special fiber GrG,k by a
computation with minuscule coweights.
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discussions over the years.

2. Affine Grassmannians

2.1. Ind-schemes. In this paper, an ind-scheme will always mean a colimit of qcqs
schemes along closed immersions. The qcqs hypothesis facilitates handling morphisms
of ind-schemes, as they necessarily respect scheme presentations. Qcqs formal schemes
obviously embed fully faithfully into the category of ind-schemes. Indeed, it is impor-
tant for us to regard formal schemes as ind-schemes, and thus their underlying reduced
subscheme equals the reduction in the category of ind-schemes.

Let k be a finite field and consider the category of pointed ind-k-schemes (X,x), where
X is an ind-scheme over k and x is a k-valued point of X. We say that a pointed k-
scheme (Z, z) is nilpotent if its reduction equals z (and thus Z is affine) and its radical
ideal Iz is nilpotent, i.e., a power Inz of it vanishes for some n� 0. It is decisive to focus
our attention on nilpotent rather than nil-ideals, i.e., those whose elements are nilpotent,
because we will encounter many ideals which are not finitely generated.

Definition 2.1. The formal completion X̂x of a pointed ind-k-scheme (X,x) is the
filtered colimit of all closed nilpotent pointed k-subschemes (Z, x) ⊂ (X,x).

Similarly, we define the ring of formal sections Γ(X̂x,O) of (X,x) to be the limit
of the rings Γ(Z,O). This ring admits the structure of a solid commutative k-algebra
in the sense of Clausen–Scholze, as Γ(Z,O) is a colimit of finite k-modules and k is a
finitely generated Z-algebra. Moreover, this induces a contravariant functor from pointed
ind-k-schemes to solid commutative k-algebras.

We shall also apply the notion of formally unramified, formally étale, and formally
smooth maps f : (X,x)→ (Y, y). For us, this means that

Hom((Z, z), (X,x))→ Hom((W,w), (X,x))×Hom((W,w),(Y,y)) Hom((Z, z), (Y, y)) (2.1)
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is either injective, bijective, or surjective, for every closed embedding (W,w) ⊂ (Z, z) of
nilpotent pointed k-schemes. During the main part of the paper, we will encounter for-
mally étale maps of ind-schemes which are far from being representable, so the following
assertion will be key.

Lemma 2.2. A formally étale map f : (X,x)→ (Y, y) of pointed ind-k-schemes induces
an isomorphism on formal completions.

Proof. Without loss of generality, we may and do assume that Y is a nilpotent scheme
and X is its own formal completion at x. By formal étaleness, we get a unique section
s : Y → X of f . This factors through a nilpotent subscheme X ′ by quasi-compactness
and the resulting map f ′ : X ′ → Y is necessarily formally étale. In particular, we may
now assume that X = X ′ is a nilpotent k-scheme. Finally, we claim that also s ◦ f is the
identity map of X. By formal étaleness, we can check this after post-composing with f ,
and it is then obvious. �

Similarly, formal étaleness can be detected in terms of formal sections.

Lemma 2.3. A map f : (X,x) → (Y, y) of pointed ind-schemes is formally étale if and
only if it induces an isomorphism of their formal sections as solid commutative k-algebras.

Proof. We may and do assume that Y is a nilpotent scheme and X is a nilpotent ind-
scheme. Then, we have that Γ(Y,O) = Γ(X,O) where the left side is discrete (i.e., a
colimit of finite k-modules) and the right side is a limit of discrete solid k-modules. In
particular, the map factors through some nilpotent subscheme X ′ ⊂ X. We deduce that
Γ(X ′,O) = Γ(X,O) and hence X ′ = X. �

We are also interested in understanding absolute properties for ind-schemes. We will
say that an ind-scheme has a certain property (P ) if it admits a presentation all of
whose constituents satisfy the property (P ), compare with [Ric20, Definition 1.15]. If
(P ) is preserved under closed immersions, then it does not depend on the choice of a
presentation: this holds for many of the adjectives that we will employ for ind-schemes
such as affine, separated, proper, projective. Then, there are other properties that one
can also define via a universal property, such as reduced and semi-normal. It turns out
that there always exist a universal reduced sub-ind-schemeXred → X, see [Ric20, Lemma
1.17].

Let us review the notion of semi-normal schemes. A scheme X is semi-normal if every
universal homeomorphism Y → X with trivial residue field extensions is an isomorphism.
For any scheme X, there exists a initial morphism Xsn → X with Xsn semi-normal: we
call it the semi-normalization of X. The assignment X → Xsn defines a functor, i.e.,
morphisms lift to their semi-normalizations. We refer to [Sta23, Tag 0EUS] for the proof
of the previous assertions. Taking colimits, we see that X 7→ Xsn extends to a functor
from ind-schemes to sheaves on k-algebras. The resulting sheaf will be an ind-scheme
too if the transition maps are closed immersions. Fortunately, this will happen for loop
groups of reductive and unipotent groups.

2.2. Loop groups. From now on, let k be a finite field, F = k((t)) the local field of
Laurent series with coefficients in k, and O = k[[t]] be the power series ring over k. In
this paper, we are interested in the loop space RF/kX of a finite type affine F -scheme
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X. This is the functor on k-algebras given by A 7→ X(A((t))), and it is representable
by an ind-k-scheme, compare with [PR08, 1.a]. If X is an affine O-model of X, we can
define a jet space RO/kX as the functor given by A 7→ X(A[[t]]). It turns out that the
natural map RO/kX → RF/kX is a closed immersion and it realises the left side as an
affine scheme that is almost never of finite type, compare again with [PR08, 1a]. Let us
mention some of their basic properties, starting with jet spaces.

Lemma 2.4. The functor X 7→ RO/kX from finite type affine O-schemes to affine k-
schemes is a limit of the functors ROn/k, where On = O/tnO. In particular, RO/k

preserves immersions and carries smooth schemes to pro-smooth schemes.

Proof. This is standard, compare with [PR08, 1a], [Zhu17b, Proposition 1.3.2] and [Ric20,
Lemma 3.17]. The first part follows by definition itself of the jet group and affineness of
X for commuting with limits. It is clear that it preserves closed immersions by general
properties of limits along affine morphisms, and also open immersions because k is the
reduction of On, which implies that ROn/kU ⊂ ROn/kX is the pullback of Uk ⊂ Xk. The
final assertion on smooth schemes is obvious by [CGP15, Proposition A.5.11]. �

For the loop group functor RF/k, it is no longer true that it respects open immersions.
Indeed, we will see that RF/kGm,F is not reduced in Proposition 2.8, whereas RF/kGa,F

clearly is. However, this still has a remedy at the formal level.

Lemma 2.5. The functor X 7→ RF/kX from finite type affine F -schemes to affine ind-
k-schemes preserves closed immersions and formally étale maps.

Proof. The assertion for closed immersions follows easily by reduction to X = AnF . As for
formal étaleness, let (Z, z) be any nilpotent scheme. Showing that a map RF/kf : RF/kX →
RF/kY lifts uniquely against the inclusion z ⊂ Z amounts to showing that f : X → Y lifts
uniquely against z((t)) ⊂ Z((t)), which holds by definition. Here, (Z((t)), z((t))) indicates
the nilpotent pointed F -scheme such that Γ(Z((t)),OZ((t))) = Γ(Z,OZ)((t)). �

Let G be a connected reductive F -group and G be a parahoric O-model of G in the
sense of [BT84, 5.1.9, Définition 5.2.6]. Note that the loop and jet spaces RF/kG and
RO/kG are now group objects in the category of ind-schemes. Now, we turn to the flag
variety arising as the quotient

GrG = (RF/kG)/(RO/kG) (2.2)

for the étale topology. This is representable by an ind-scheme by [PR08, Theorem
1.4]. The Bruhat decomposition for parahoric models of reductive groups over non-
archimedean fields assumes the form

G(F̆ ) =
⊔

w∈WG\W/WG

G(Ŏ)ẇG(Ŏ). (2.3)

Here, we let T ⊂ G denote a maximally F̆ -split maximal F -torus, see [BT84, Corollaire
5.1.12], T be the connected Néron O-model of T , N the normalizer of T inside G,
W := N(F̆ )/T (Ŏ) the Iwahori–Weyl group, and WG ⊂ W the subgroup of elements
whose lifts ẇ ∈ N(F̆ ) are contained in G(Ŏ), see [KP23, Theorem 7.5.3, Proposition
7.5.5]. For every w ∈ W , we define GrG,l,w as the étale descent to the reflex field l of
w of the smooth locally closed orbit of w inside GrG,k̄ under the jet k̄-group of G. Its
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scheme-theoretic closure GrG,l,≤w inside GrG,l is a reduced integral projective scheme,
compare with [PR08, Definition 8.3]. This is called the Schubert variety associated with
w and our goal in this paper is to study its geometry.

We denote by Grsn
G,l,≤w the semi-normalizations of the Schubert varieties embedded in

GrG,l. Note that, while we have canonical transition morphisms Grsn
G,l,≤v → Grsn

G,l,≤w over
a common reflex field, it is not clear whether they are closed immersions. In particular,
it is not a priori clear that the sheaf Grsn

G is an ind-scheme in our strict sense. Fortu-
nately, these problems dissipate thanks to the following key theorem on semi-normalized
Schubert varieties.
Theorem 2.6 ([FHLR22, CL24]). The l-varieties Grsn

G,l,≤w are normal, Cohen–Macaulay,
rational, compatibly ϕ-split and globally +-regular. In particular, the semi-normalization
Grsn
G is an ind-k-scheme.
As explained in the introduction, this result goes back to [Fal03, Theorem 8] for split

G, [PR08, Theorem 8.4] for tame G, and [FHLR22, Theorem 4.1] for all G. A new
uniform proof was given in [CL24]. Before concluding this section, we want to explain
the several notions appearing in the statement and the proof strategies.

A noetherian scheme X is Cohen–Macaulay if the depth of its local rings (i.e., the
maximal length of its regular sequences) equals their Krull dimensions, see [Sta23, Tag
00N7]. Equivalently, one can define Cohen–Macaulayness by demanding that the dualiz-
ing complex ω•X is concentrated in a single degree or that the lower (i.e., below the Krull
dimension) local cohomology groups H i

x(OX,x) all vanish, compare with [Bha20, Defini-
tion 2.1, Example 2.5]. We say following Kovács [Kov17, Definition 1.3] that a normal
Cohen–Macaulay k-variety X is rational if for any proper birational map f : Y → X with
Y also normal and Cohen–Macaulay, the higher direct image sheaves Rif∗OY vanish for
all i > 0. It is enough to verify this condition for a resolution of X by [Kov17, Theorem
9.12] and it implies vanishing of Rif∗OY for all i > 0 by [Kov17, Theorem 8.6]. Finally,
we say that X is ϕ-split if the Frobenius ϕ : OX → ϕ∗OX splits as a map of OX -modules,
and compatibility carries the obvious meaning, compare with [BS13, Definitions 5.0.1 and
5.1.4]. More generally, X is a splinter in the sense of [Bha12, Definition 0.1] or globally
+-regular in the sense of [BMP+23, Definition 6.1] if OX → OY splits as OX -modules
for any finite cover Y → X. It is proved in [Bha12, Corollary 5.3] that splinters are au-
tomatically normal and Cohen–Macaulay. There is also a notion of strong ϕ-regularity
generalizing ϕ-splitness and which is only slightly stronger than global +-regularity.

Let us now sketch the proof of Theorem 2.6. Let I be a Iwahori O-model of G obtained
from G by dilatation. The transition map GrI → GrG is proper smooth, so it suffices
to handle the Iwahori case. Up to translation into the neutral component and after
enlarging the finite field k, any Schubert variety GrI,≤w is resolved by the convolution
Schubert variety GrI,≤s• where s• is a sequence of positive simple reflections in the
absolute Iwahori–Weyl group. This variety is an iterated P1

k-bundle, so it is smooth
in particular, and it is usually called the BSDH variety after work of Bott–Samelson
[BS58], Demazure [Dem74], and Hansen [Han73]. Prior to [CL24], the existence of a
ϕ-splitting of GrI,≤s• was always deduced via the Mehta–Ramanathan criterion [MR85].
This requires producing a Cartier divisor on GrI with degree 1 on each GrI,≤si , which is
difficult to define homogeneously, see [FHLR22, Section 4] for the full proof using some
case division. This upgrades to a splitting of the absolute integral closure by the proof of
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[Cas22, Theorem 1.4], whose method goes back to [LRPT06] for classical flag varieties. In
[CL24], we approach the problem instead via inversion of adjunction following [Bha12,
Proposition 7.2] refined as in [BMP+23, Theorem 7.2], i.e. we split absolute integral
closure by induction on the length of s•. We have to perform a few calculations with
auxilliary boundaries, but the proof remains uniform for all G throughout.

2.3. A rank 1 example. In this subsection, we calculate Schubert varieties for rank 1
split groups, and in particular verify their normality as in Theorem 2.9. We will do this
by exploiting certain presentations of Schubert varieties at special level, which appear in
[Zhu17a, Subsection 1.2.2] and also [SW20, Lemmas 19.3.5 to 19.3.7]. Let G = GL2,F ,
G = GL2,O, and µ = (1, 0) be its only dominant minuscule coweight. Up to translation,
the Schubert varieties inside GrGL2,O

are of the form GrGL2,O,≤nµ.

Proposition 2.7. The variety GrGL2,O,≤nµ is a normal lci.

Proof. We follow [Zhu17a, Lemma B.4]. Note that every RO/kGL2,O-orbit has codimen-
sion at least 2 in a larger one, so we at least know that every Schubert variety is regular
in codimension 1. We just have to verify that it is lci.

Let Mat2,O be the O-scheme of 2-by-2 matrices and consider the closed k-subscheme
Xn ⊂ RO/kMat2,O ∩RF/kGL2,F given by the preimage of tn along the determinant map
det : RF/kGL2,F → GrGm,O

. We claim that the map Xn → GrGL2,O
equals the natural

RO/kGL2,O-torsor over GrGL2,O,≤nµ.
At the level of geometric points, this equality of closed subfunctors is an immediate

consequence of the elementary divisor theorem. Therefore, it suffices to verify that Xn

is reduced. For this, we note that Xn is a torsor over a finite type k-scheme Yn un-
der the congruence subgroup of RO/kMat2,O arising as the kernel of the map towards
ROn+1/kMat2,On+1 , where On+1 = O/tn+1O. We start by proving that Yn is generi-
cally reduced. For this, consider its tangent space at the matrix (tn, 0, 0, 1). It equals
the k-submodule of Mat2(On+1) whose (1, 1)-entry is divisible by tn, and thus has di-
mension equal to 4(n + 1) − n = 3n + 4. If we consider the stabilizer of the matrix
(tn, 0, 0, 1) under left and right multiplication by ROn+1/kGL2,On+1 , we get the matrix
equality (tna, b, tnc, d) = (tne, tnf, g, h), and hence the topologically dense smooth orbit
has dimension equal to 8n+8−4n−4−n = 3n+4, and this implies generic reducedness.
Finally, if we write down the determinant as a power series modulo tn+1, we conclude
that Yn sits inside A4n+5

k and is defined by n+1 equations. This implies that Yn is indeed
a normal complete intersection. �

2.4. Normality. In this subsection, we discuss reducedness and semi-normality of loop
groups RF/kG attached to connected reductive groups. For simplicity, we use the short-
hand notation Rred

F/kG := (RF/kG)red, resp. Rsn
F/kG := (RF/kG)sn to denoted the reduction

and semi-normalization of our ind-schemes. Let us start by the problem of reducedness,
since it is the most simple.

Proposition 2.8. The ind-scheme RF/kG is reduced if and only if G is semi-simple and
p - #π1(G).

Proof. The non-reducedness for non-semisimple G was proved in [PR08, Proposition 6.5]
The obstruction for tori T lies in the fact that the reduction of GrT is a zero-dimensional
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scheme locally of finite type, and hence Lie(Rred
F/kT ) = Lie(T ) is not equal to Lie(T ).

Let A = G/Gder denote the abelian quotient of G. If RF/kG were reduced, then Lie(G)
would map onto Lie(A) ⊂ Lie(A), contradicting smoothness of the map of F -schemes
G→ A.

Assume that G is semi-simple but p divides the order of π1(Gder). In [HLR18, Propo-
sition 7.10], we proved that RF/kG is non-reduced when G is tame. First, note that
Gsc → G is a central isogeny whose kernel µ is not étale. In particular, we know
by [CGP15, Examples 1.3.2 and A.7.9] that RF/F pµ is positive-dimensional and hence
RF/F pGsc does not surject onto RF/F pG. Since Schubert varieties of isogenous group
have isomorphic semi-normalizations, we deduce that if RF/kG were reduced, then we
would have an equality

Lie(RF/F pGsc/RF/F pµp) + Lie(G) = Lie(G) (2.4)

of Lie algebras. But the left side is the sum of a proper F p-subspace and an Op-lattice,
so this equality can never hold.

Next, we consider the case when G is simply connected, that was handled by [Fal03,
Corollary 11] for split G and [PR08, Proposition 9.9] for tame G. It will follow from our
calculations of distribution algebras later on that Rred

F/kG→ RF/kG is formally étale, e.g.,
see Lemma 3.2 and Proposition 3.5. Modding out by the pro-smooth group RO/kG, we
deduce that the reduction map of GrG is formally étale at every point by homogeneity.
Now, [HLR18, Lemma 8.6] implies that it is an isomorphism.

Finally, we treat the case when G is semisimple and p does not divide the order of
π1(Gder), due to [PR08, Theorem 6.1] for tame G. Notice that the kernel µ of Gsc → G
is étale. Consequently, 1k = RF/k1F → RF/kµ is formally étale, and the right side has
finitely many points, so we conclude that it is also an étale k-scheme. In particular,
RF/kGsc → RF/kG is an étale cover on neutral components and we deduce that RF/kG
is also reduced. �

Next, we move to the problem of semi-normality. In this paper, we work mostly
with the full loop group RF/kG during the proofs to fully exploit its multiplication law.
However, for classical reasons, we state the result below for Schubert varieties in GrG .

Theorem 2.9. If p - #π1(Gder), then GrG,l,≤w is normal.

In particular, we deduce by Theorem 2.6 that the Schubert varieties GrG,≤w are nor-
mal, Cohen–Macaulay, rational, and globally +-regular. This result is found in [Fal03,
Theorem 8] for split G, [PR08, Theorem 8.4] for tame G, and [FHLR22, Theorem 4.23]
if p > 2 or G is SU3-free. As mentioned in the introduction, those papers employ Lie-
theoretic considerations to ad hoc W (k)-lifts of RF/kG. In this paper, we argue via
distributions and therefore our proof must be postponed until the very end, see Corol-
laries 3.11 and 3.14. Before moving on, let us perform a helpful reduction step.

Lemma 2.10. Theorem 2.9 holds if Rsn
F/kGsc → RF/kGsc is formally étale.

Proof. First of all, note that, if p does not divide the order of π1(Gder), the neutral
component of Rred

F/kG admits RF/kGsc as an étale cover by the proof of Proposition 2.8,
so this reduces our problem to simply connected G. Suppose that Rsn

F/kG → RF/kG is
formally étale. Quotienting out the right action of the pro-smooth jet group RO/kG, we
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deduce that Grsn
G → GrG is formally étale. Restricting to Schubert varieties, we also see

that Grsn
G,≤w → GrG,≤w is formally unramified. This implies by [Sta23, Tag 04XV] that

the semi-normalization map is a closed immersion, and thus an isomorphism, around the
identity. By RO/kG-equivariance, this propagates to the entire variety, which is normal
by Theorem 2.6. �

2.5. Beilinson–Drinfeld deformation. In this subsection, we discuss the deformation
of the k-ind-scheme GrG to the ring of integers O as defined by Beilinson–Drinfeld [BD91].
This means we have to consider the category of qcqs pointed ind-schemes (X,x) over
O, where x stands for a section of the structure map X → Spec(O). We can still
define corresponding O-relative versions of the formal completion and the ring of formal
sections, where the latter carries the structure of a solid commutative O-algebra for the
t-adic topology, compare with [CS19, Proposition 7.9]. Note that Lemmas 2.2 and 2.3
hold also in the O-relative setting with the same proofs. Similarly, we can define the
various properties such as separated, proper, affine, reduced, and semi-normal.

A novelty here is the notion of flatness over O (this is automatic over a field), which
gives rise to a functor X 7→ Xfl given as the scheme-theoretic image of the generic fiber
and called the flat closure, see [HLR18, Definition 8.3]. We say moreover that (X,x) is
formally flat if the formal completion is flat as an ind-scheme. Note that a normal flat
O-scheme of finite type is formally flat because localizations of formal schemes are flat
and normality is preserved under completion for excellent rings.

Let X be a finite type affine O-scheme. We define the loop space RO2
◦/O
X as the

affine ind-scheme representing the functor A 7→ X (A((t− a))) on O-algebras. Here, a
denotes the image of t ∈ O in A via the structure map and we regard A((t− a)) as an
O-algebra instead via the formal variable t. Similarly, we have a closed affine subscheme
RO2/OX ⊂ RO2

◦/O
X called the jet space and representing the functor A 7→ X (A[[t− a]])

on O-algebras. Lemmas 2.4 and 2.5 admit counterparts in the O-relative setting and we
also have the following flatness result.

Lemma 2.11. If G is quasi-split with induced maximal torus T , then the ind-scheme
RO2
◦/O
G is formally flat.

Proof. This is proved in [HLR18, Corollary 8.5, Proposition 8.8] for tame G and without
assuming T to be induced. Note that G has a big cell C := U− × T × U+ as an open
neighborhood of the identity by [BT84, Théorème 3.8.1], where products are fibered over
O. The big cell itself can be identified with an open neighborhood of the zero section
in AnO, where n equals the dimension of G. In particular, by the O-relative variant of
Lemma 2.5, the loop spaces RO2

◦/O
G and RO2

◦/O
AnO, have isomorphic formal completions,

and one checks easily that the latter is formally flat. �

For a parahoric O-model G of a given connected reductive F -group G, we can define
the affine Grassmannian

GrG,O := RO2
◦/O
G/RO2/OG (2.5)

as the quotient for the étale topology and it is representable by a projective ind-scheme
by [PZ13, Proposition 5.5]. Its generic fiber GrG,F is the usual affine Grassmannian
attached to the F -group G, whereas the special fiber GrG,k is the affine flag variety we’ve
studied so far. Let µ be a conjugacy class of geometric coweights of G with reflex field
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E, and consider the associated Schubert variety GrG,E,≤µ. We define the local model
GrG,OE ,≤µ as being the scheme-theoretic image of the former in GrG,OE .

Theorem 2.12. The semi-normal flat O-scheme Grsn
G,OE ,≤µ has ϕ-split special fiber. In

particular, it is normal, Cohen–Macaulay and ϕ-rational.

Proof. This result is proved in [Zhu14, Theorems 3.8 and 3.9] and [HR22, Theorem 2.1]
for tame G, in [FHLR22, Theorem 5.4] when p > 2 or SU3-free G. We now prove this
for all G building on Theorem 2.9. In [GL22, Theorem 1.3], we proved that GrG,OE ,≤µ
is unibranch, i.e., its normalization is a universal homeomorphism, by a nearby cycle
calculation relying on the Wakimoto filtration of [AB09, Theorem 4], compare also with
[ALWY23, Theorem 4.17]. One sees that the inclusion in GrG,OE ,≤µ of the jet group orbit
of any representative ν ∈ X∗(T ) of µ is a universal homeomorphism onto its image by
Zariski’s main theorem and unibranchness of local models. Now, proper monomorphisms
are closed immersions, but both schemes above are flat and reduced, so we conclude that
the orbit map is an open immersion, compare with [Ric16, Corollary 2.14]. Joint with
[HR21, Theorem 6.12], compare also with [AGLR22, Theorem 6.16], this implies that
the special fiber of GrG,OE ,≤µ is generically reduced. By flatness, the special fiber of the
normalization of the local model is also S1, hence itself reduced by Serre’s criterion. In
particular, the special fiber of the normalization is covered by the ϕ-split, hence weakly
normal, variety Grsn

G,k,≤µ in light of Theorem 2.6, so this normalization equals Grsn
G,OE ,≤µ.

On the other hand, covering G by a z-extension and invoking Theorem 2.9, we can show
that the special fiber also maps to Grsn

G,k,≤µ. Since it is reduced, we deduce that this map
is an isomorphism. As for the remaining assertions, we can derive them formally from
the ϕ-splitness of the special fiber just like in [FHLR22, Theorem 5.4]. �

Note that during the above proof, we came really close to showing the embedded
version of the previous normality theorem.

Theorem 2.13. If p - #π1(Gder), then GrG,OE ,≤µ is normal.

Proof. This follows from Theorem 2.9 and Theorem 2.12 as follows. The special fiber
of Grsn

G,OE ,≤µ is semi-normal, hence it embeds into the ind-scheme Grsn
G,k. Hence, the

semi-normalization of the local model is an isomorphism in the generic fiber and a closed
immersion in the special fiber, so it must be an isomorphism by flatness and Nakayama’s
lemma. �

Before concluding this section, we state a helpful version of Theorem 2.12 at the ind-
scheme level.

Corollary 2.14. Assume G is simply connected. Then, Grsn
G,O is an ind-scheme and its

special fiber identifies with Grsn
G,k.

Proof. By étale descent, we may enlarge k so that G is quasi-split by Steinberg’s theorem.
Let ρ∨ be the half-sum of all coroots. It is clear that for simply connected G, we have
µ ≤ Nρ∨ for N � 0. Also the definition field of ρ∨ is F . In particular, we see that
Grsn
G,O equals the colimit of the local models Grsn

G,O,≤Nρ∨ in the category of O-sheaves.
We must show that the transition morphisms of our presentation are closed immersions.
This is true on geometric fibers by Theorems 2.6 and 2.12, so we conclude by flatness
and Nakayama’s lemma. �
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3. Distributions

In this section, we study the notion of distributions of ind-schemes, which arise as
non-linear differential operators near a given point. They capture essentially the same
information as formal completions at a point, but with the added bonus that group
distributions form a solid associative Hopf k-algebra. We give a Serre presentation of
Dist(RF/kG) in terms of its rank 1 and unipotent parts, and use this to prove the nor-
mality theorem.

3.1. Preparations. During this section, we work again in the category of pointed ind-
schemes (X,x) over a finite field k, i.e., X is an arbitrary ind-scheme and x is a k-valued
point of X. Our notion of distributions is similar to [HLR18, Definition 7.1], except we
drop the Artinian condition and take topological information into account.

Definition 3.1. The solid k-module Dist(X,x) is the filtered colimit of the solid k-
modules Homk(Γ(Z,OZ), k), as (Z, x) runs over all closed nilpotent pointed k-subschemes
of (X,x).

The k-module Dist(X,x) has a natural solid structure in the sense of Clausen–Scholze
[CS19, Proposition 7.5, Theorem 8.1], because k is a finitely generated Z-algebra, and
we can write the global sections of Z as the filtered colimit of its finitely generated
k-submodules, so its k-module dual equals the cofiltered limit of its finitely generated
k-quotients. Note that Dist(X,x) only depends on the formal completion of (X,x): in
fact, it equals the solid k-dual of the ring of formal sections. Later on, whenever x is
understood, we will just omit it from the notation.

Given a morphism (X,x) → (Y, y) of pointed ind-k-schemes, there is a natural map
Dist(X,x)→ Dist(Y, y). Indeed, any closed nilpotent subscheme ZX ⊂ X maps to Y via
a closed nilpotent subscheme ZY ⊂ Y , and this induces a morphism of solid k-modules
Dist(ZX , x) → Dist(ZY , y) that is natural in the various closed nilpotent subschemes.
Note that closed immersions induce monomorphisms at the level of distributions. In par-
ticular, we see that Dist(Z, z) embeds into Dist(X,x) for any closed nilpotent subscheme
Z ⊂ X supported at x. In the next lemma, we impose no representability nor finiteness
condition on the given morphism.

Lemma 3.2. Let f : (X,x)→ (Y, y) be a map of pointed ind-schemes. Then, Dist(f) is
an isomorphism if and only if f is formally étale at x.

Proof. First, we handle the if direction. By Lemma 2.2, formally étale maps induce an
isomorphism between formal completions. The definition of Dist only depends on formal
completions, so the result is clear. Now, we handle the only if direction. Note that the
condensed k-dual of Dist(Z, z) equals its ring Γ(Z,OZ) of global sections. In particular,
the ring of formal sections of (X,x) equals the condensed k-dual of Dist(X,x). Since
Dist(f) is an isomorphism, we conclude that f induces an isomorphism of formal rings.
Hence, our claim follows from Lemma 2.3. �

We want to understand when maps of distributions are surjections in the category of
solid k-modules. For this, we say that a map f : (X,x)→ (Y, y) of pointed ind-schemes
over k is formally dominant if the scheme-theoretic image functor along f preserves
formal completions.
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Lemma 3.3. Let (X,x)→ (Y, y) be a formally dominant map of pointed ind-k-schemes.
Then, Dist(f) is a surjective map of solid k-modules.

Proof. We may assume that X is nilpotent and Y is the scheme-theoretic image of X
along f (and thus also nilpotent). At the level of formal sections, we have an inclusion
Γ(Y,O) → Γ(X,O) of discrete solid k-modules. Upon taking k-duals, this turns into a
surjection of solid k-modules. �

If f is a scheme-theoretic dominant map of finite type k-schemes, then it is also
formally dominant by Chevalley’s lemma, compare with [HLR18, Lemma 7.3]. However,
beware that this is false as soon as we drop finiteness, as revealed by the endomorphism
of the scheme RO/kA1

k given by
∑
tizi 7→

∑
tizii . Indeed, the scheme-theoretic images of

nilpotent schemes along that endomorphism are always of finite type.
Next, we show that distribution modules are factorizable in products of ind-schemes.

Lemma 3.4. Let (X,x) and (Y, y) be pointed k-schemes. The canonical map of solid
k-modules

Dist(X,x)⊗�
k Dist(Y, y)→ Dist(X × Y, (x, y)) (3.1)

is an isomorphism.

Proof. Notice that if we let ZX , resp. ZY , run over all nilpotent thickenings of x at X,
resp. y at Y , then the colimit of the closed nilpotent subschemes ZX ×k ZY recovers the
formal completion of X ×k Y at (x, y). In particular, we may assume that X and Y
are themselves nilpotent, as the solid tensor product preserves colimits. But since k is a
field, taking k-module duals commutes with tensor products, and it is easy to check that
the isomorphism respects the solid structure. �

Note that Dist is a covariant functor, so the diagonal ∆: X → X ×X yields a comul-
tiplication map

µ := ∆∗ : Dist(X,x)→ Dist(X ×X, (x, x)) ' Dist(X,x)⊗�
k Dist(X,x) (3.2)

making the distribution k-module into a cocommutative solid k-coalgebra, with counit
ε : k = Dist(∗)→ Dist(X,x) induced by x. Assume X = G is a k-group ind-scheme. We
define its distribution k-algebra Dist(G) := Dist(G, 1) as the solid k-module of distribu-
tions based at the origin. The multiplication mapm : G×G→ G induces a multiplication
map

m := m∗ : Dist(G×G) ' Dist(G)⊗�
k Dist(G)→ Dist(G) (3.3)

making the distribution k-module into a cocommutative associative solid Hopf k-algebra,
with antipode induced by the inverse map of G. Beware that this associative algebra
ought to be as commutative as G itself, and hence it is very rarely so.

3.2. A Serre presentation. Let G be a connected reductive F -group and assume it is
residually split in the sense of [KP23, Definition 9.10.11] throughout this subsection. By
[KP23, Proposition 9.10.12], G is also quasi-split. In particular, we can fix a pinning in
the sense of [BT84, Section 4.1], i.e., the data consisting of a maximally split maximal
F -torus T of G, a Borel F -subgroup B ⊂ G, and certain isomorphisms x−1

α between Uα
and certain explicit groups that we describe below.
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Our results in this section consist in giving a solid associative k-algebra presentation for
Dist(RF/kG) in terms of Dist(RF/kU

±). We have a notion of coproduct in the category
of solid associative k-algebras by taking the usual construction in condensed associative
k-algebras and then solidifying it.

Proposition 3.5. If G is simply connected and residually split, the natural map

∗�α∈±∆ Dist(RF/kUα)→ Dist(RF/kG) (3.4)

of solid associative k-algebras is an epimorphism.

Proof. This will be proved along several computational lemmas that appear below. First,
we note that we have a decomposition

Dist(RF/kU
−)⊗�

k Dist(RF/kT )⊗�
k Dist(RF/kU

+) = Dist(RF/kG) (3.5)

by combining formal étaleness with Lemma 3.4. In order to handle the unipotent parts
of the distribution algebra, it is enough to show that

∗�α∈∆ Dist(RF/kUα)→ Dist(RF/kU
+) (3.6)

is a surjection of solid associative k-algebras, which will be done in Lemma 3.6. Finally,
to handle the torus we observe that there is also a decomposition

Dist(RF/kT ) = ⊗�
α∈∆Dist(RF/kTα) (3.7)

in the category of solid k-modules by Lemma 3.4. Here, Tα denotes the intersection of
T with the subgroup Gα generated by U±α. In particular, this reduces our statement to
the rank 1 case, which is handled in Lemma 3.7. �

Below, we perform the explicit computations required to verify the claims used in
Proposition 3.5. For this, let us recall that are fixing the data of certain compati-
ble isomorphisms as follows. Assume first that 2α is not a root, and the pinning is
of the form xα : RFα/FGa,Fα → Uα, where Fα/F is a separable field extension that
is unique up to conjugation under GalF . If 2α is a root, then the pinning takes the
form xα : RF2α/FGp,Fα/F2α

, where Fα/F is a separable field extension, and Fα/F2α is a
quadratic field extension. Here, the group Gp,Fα/F2α

is a three-dimensional F2α-group
described explicitly in [BT84, 4.1.15] whose rational points are pairs in (Fα)2 with trace-
zero second coordinate.

Lemma 3.6. The map (3.6) is a surjection of solid associative k-algebras.

Proof. Observe that Dist(U+) is the product of the Dist(Uα) as α runs over all positive
roots by Lemma 3.4. This statement is proved by induction on the height of a root,
by exploiting the commutator relations inside U+ explicitly written down in [BT84,
Addendum]. It is then clear that we are reduced to proving the statement for almost
simple simply connected groups of rank 2 with ∆ = {α, β}, an exhaustive list being given
by restrictions of scalars of groups of type A2, C2, 2A3, 2A4, 3,6D4, and G2.

First, if G is of type A2, then Φ+ contains exactly three roots α, β, α+ β, then we get
the commutator formula

[xα(z1), xβ(z2)] = xα+β(z1z2). (3.8)
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It is clear that this map is formally dominant, because it has bounded coefficients and
hits a topological k-basis of F . In particular, Dist(RF/kUα+β) is contained in the image
of (3.6) by Lemma 3.3.

If instead G is of type C2 or 2A3, then Φ+ contains exactly four roots of the form
α, β, α+ β, 2α+ β, and we get

[xα(z1), xβ(z2)] = xα+β(z1z2)x2α+β(N(z1)z2) (3.9)

where N(z1) = z2
1 or the norm of the quadratic extension in the non-split case, and the

variables are understood to be formal. Again, one can check easily by this expression
that the commutator map is formally dominant. In particular, we deduce by Lemma 3.3
that Dist(RF/kUα+β) and Dist(RF/kU2α+β) both lie in the image of (3.6).

If G is of type 3,6D4 or G2, then Φ+ = {α, β, α+ β, 2α+ β, 3α+ β, 3α+ 2β}, and we
get

[xα(z1), xβ(z2)] = xα+β(z1z2)x2α+β(θ(z1)z2)x3α+β(N(z1)z2)x3α+2β(N(z1)z2
2), (3.10)

where N(z1) = z3
1 in the split case and is the usual norm of the fixed cubic extension

in the non-split case, θ(z1)z1 = N(z1), and the variables are understood to be formal.
In this case, the commutator is not dominant for dimension reasons. However, one can
observe that the formal completion of RF/kUα+β is contained in the scheme-theoretic
image of the above map, because z1z2 is algebraically idenpendent from the remaining
polynomials. In particular, Dist(RF/kUα+β) is contained in the image of (3.6). This
means we can transport xα(z1z2) to the left side of the equation, and we are reduced to
the remaining three root groups. We continue this procedure first by showing containment
of Dist(RF/kU3α+2β), then of Dist(RF/kU2α+β), and finally of Dist(RF/kU3α+β).

Finally, we consider the case where G is of type 2A4. It follows that Φ+ = {α, β, α+
β, 2α, 2α+ β, 2α+ 2β}. Therefore, we get

[xα(z1, z2), xβ(z3)] = xα+β(σ(z1z3), N(z1)z2)x2α+β(z3N(z1) + z3z2) (3.11)

where N denotes the norm of Fα/F2α and σ the non-trivial involution. We can see
that the formal completion of RF/kUα+β Dist(U∆) is contained in the scheme-theoretic
image of the above map. As above, this is enough to show that Dist(RF/kUα+β) and
Dist(RF/kU2α+β) both lie in the image of (3.6). �

In the next lemma, we handle the rank 1 case. For this, we recall that there is a natural
isomorphism α∨ : RFα/FGm,Fα → Tα, where the right side equals the intersection of T
with the subgroup Gα generated by U±α.

Lemma 3.7. Assume G is simply connected, residually split and has rank 1. Then, (3.4)
is a surjection of solid associative k-algebras.

Proof. Let α be the positive simple root of G. First, we assume that G = RFα/FSL2,Fα .
Inside RF/kG, we have the following equation

xα(z1)x−α(z2) = x−α
( z2

1 + z1z2

)
α∨(1 + z1z2)xα

( z1

1 + z1z2

)
(3.12)

where the variables are understood to be formal. If we isolate the term α∨(1 + z1z2) on
the right side, we see that the map is formally dominant. This implies by Lemma 3.3



DISTRIBUTIONS AND NORMALITY THEOREMS 15

that Dist(RF/kT ) is contained in the image of (3.4). By the big cell factorization, this
implies the desired surjectivity in the split case.

Next, we handle the rank 1 quasi-split group G = RF2α/FSU3,Fα/F2α
where Fα/F is

a separable field extension and Fα/F2α is quadratic. In RF/kG, we have the following
equality

xα(z1, z2)x−α(z3, z4) = x−α(f1, f2)α∨(1 + g)xα(f3, f4) (3.13)
where the fi are explicit rational functions on the zi involving the quadratic involution
σ, which we omit for simplicity, and

g = −σ(z1)z3 + (z2 + λN(z1))(z4 + λN(z3)), (3.14)

compare with [BT84, 4.1.12]. The map resulting from isolating α∨(g) in the right side
can be checked to be formally dominant, so we see by Lemma 3.3 that Dist(RF/kT ) is
contained in the image of (3.4), implying that this is a surjection. �

Now, we have all the necessary tools at our disposal to establish a Serre presentation
for the loop distribution algebra Dist(RF/kG) of a simply connected F -group G, inspired
by [Tak83a, Proposition 3.6] and [Tak83b, Theorem 5.1]. For this, we need to introduce
the following notation: given α ∈ ∆, a positive simple root, we let G±α be the derived
subgroup generated by U±α, then we let V±α ⊂ U± be the unique smooth connected
unipotent subgroup such that U± = U±α×V±α, and finally we denote by Q±α the semi-
direct product G±α n U±α. Let us emphasize that Q±α is a kind of derived parabolic
subgroup. Indeed, it equals the extension of the derived subgroup G±α of the standard
Levi of the minimal parahoric P±α by its unipotent radical U±α.

Theorem 3.8. If G is simply connected and residually split, the kernel of the surjection

Dist(RF/kU
+) ∗� Dist(RF/kU

−)→ Dist(RF/kG) (3.15)

of solid associative k-algebras is the solid ideal generated by the kernels of

Dist(RF/kU
±) ∗� Dist(RF/kU∓α)→ Dist(RF/kQ±α), (3.16)

as α ∈ ∆ runs through all positive simple roots.

Proof. Let U be the solid associative k-algebra given by the generators and relations
described in the statement of the theorem. We have a surjection U → Dist(RF/kG) of
solid associative k-algebras by Proposition 3.5. Our first goal is to define a section s of
the previous surjection in the category of solid k-modules. By definition, the algebra U
contains Dist(U±) and Dist(Tα) for any α ∈ ∆ as solid associative k-subalgebras. This
yields the desired section by using the factorizations (3.5) and (3.7).

To finish the proof, it is enough by Lemma 3.6 to prove stability of the corresponding
solid k-submodule im(s) under left multiplication by every Dist(RF/kUα) for any root
α ∈ ∆. Before doing this however, we prove that the solid module given as the product
of the Dist(RF/kTα) gives rise to a solid commutative k-subalgebra of U . Let α 6= β ∈ ∆
be distinct positive simple roots. We claim that the natural conjugation map

Dist(RF/kTα)⊗� Dist(RF/kGβ)→ Dist(RF/kGβ) (3.17)

lifts to U , which clearly implies the desired commutativity. Indeed, Dist(RF/kGβ) is sur-
jected upon by the algebra coproduct of Dist(RF/kU±β) according to Lemma 3.7. The
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latter solid algebra carries a conjugation action by Dist(RF/kTα) and this action is com-
patible with the maps to U , because our universal solid algebra contains Dist(RF/kQ±α)
as a solid subalgebra and U±β, Tα ⊂ Q±α.

Finally, we check stability of the section s to the natural surjection U → Dist(RF/kG)

under left multiplication by Dist(RF/kUα) for every α ∈ ∆. Writing U− = V−α × U−α,
we deduce from Lemma 3.4 a decomposition

Dist(RF/kU
−) = Dist(RF/kV−α)⊗� Dist(RF/kU−α). (3.18)

On the other hand, we know that Dist(RF/kUα) normalizes Dist(RF/kV−α) inside U due
to our imposed relations coming from Dist(RF/kQα). In other words, we can switch the
order in which Dist(RF/kV−α) and Dist(RF/kUα) are multiplied inside U . Finally, we
can assemble the product

Dist(RF/kUα)⊗� Dist(RF/kU−α) ⊂ Dist(RF/kGα) (3.19)

inside U , because Qα contains Gα, and then use the factorization (3.5) for Gα to switch
the order of the loop distributions of ±α. Since the solid commutative k-subalgebra
Dist(RF/kT ) ⊂ U normalizes Dist(RF/kUα), we can finally pull this factor across and
absorb it into Dist(RF/kU

+), concluding our claim. �

3.3. Proof of normality. In this section, we finally prove Theorem 2.9 (which also
implies Theorem 2.13) using our newly acquired distribution skills. The first result needed
is a surjectivity one, giving us some control on what happens with the distributions of
the semi-normal loop group.

Lemma 3.9. If G is residually split, the natural map of solid associative k-algebras

∗�α∈∆ Dist(RO/kGsα)→ Dist(Rsn
F/kG) (3.20)

is a surjection. Here, Gsα denotes the parahoric O-model attached to a wall of a fixed
alcove with associated Iwahori O-model I.

Proof. Consider the Demazure resolution GrI,≤s• → Grsn
I,≤w which is a proper birational

cover. In particular, it surjects at the level of distributions supported at the identity by
Lemma 3.3 and Chevalley’s lemma, compare with [HLR18, Lemma 7.3]. This map lifts
to the natural RO/kI-torsors on the right as follows

RO/kGs1 ×RO/kI × · · · ×RO/kI RO/kGsn → (Rsn
F/kG)≤w (3.21)

by multiplying the subgroups on the left inside Rsn
F/kG. Note that the left side is built

out of parahoric jet groups and it surjects again by formal dominance after taking Dist,
see Lemma 3.3. Passing to colimits, we get our claim. �

Our next step consists of a reduction to rank 1 groups.

Proposition 3.10. Assume G is simply connected and residually split. If Theorem 2.9
holds for every rank 1 subgroup Gα, then it also does for G.

Proof. It is enough by Lemma 2.10 to show that the semi-normalization map for RF/kG
is formally étale, and this can be verified at the distribution level, i.e., if we show that

Dist(Rsn
F/kG)→ Dist(RF/kG) (3.22)
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is an isomorphism, thanks to Lemma 3.2.
By Theorem 3.8, we are reduced to showing that Dist(Rsn

F/kG) satisfies the generators
and relations described in that statement. First of all, note that the semi-normal ind-
group scheme RF/kU

± naturally sits inside Rsn
F/kG as a closed subgroup by naturality of

the semi-normalization functor. Next, we note that by Lemma 3.4 applied to the big cell
of a parahoric G fixing an alcove of the standard appartment, we have a factorization

Dist(RO/kG) = Dist(RO/kU−)⊗� Dist(RO/kT )⊗� Dist(RO/kU+), (3.23)

where U± and T denote the corresponding O-models of U± and T sitting inside G as
smooth closed subgroups. Since the jet group RO/kT is also semi-normal by Lemma 2.4,
it naturally lifts to Rsn

F/kG. Moreover, it decomposes as a product of the RO/kTα for
α ∈ ∆, because G is simply connected. By assumption, we also know that RF/kGα is
semi-normal, so it lifts canonically to Rsn

F/kG compatibly with RF/kU±α and RO/kTα. In
particular, we deduce that

Dist(RF/kU
+) ∗� Dist(RF/kU

−)→ Dist(Rsn
F/kG) (3.24)

is a surjection of solid associative k-algebras, by combining Lemmas 3.7 and 3.9.
Seeing as Dist(Rsn

F/kG)→ Dist(RF/kG) is a surjection of solid associative k-algebras, it
is enough to prove that the kernel of (3.24) contains that of (3.15). Due to Theorem 3.8,
this follows by observing that the semi-normal ind-scheme RF/kQ±α lifts canonically to
Rsn
F/kG by naturality of the semi-normalization functor and our assumed rank 1 case. �

In the next corollary, we say that a simply connected group is SU3-free if all of its
rank 1 subgroups Gα over any unramified extension of F are inner forms of restrictions
of scalars of SL2.

Corollary 3.11. Theorem 2.9 holds for all SU3-free groups.

Proof. By Lemma 2.10, we may assume that G is simply connected. After enlarging k,
we may also assume by étale descent that G is residually split. If G is SU3-free, then all
its rank 1 simply connected subgroups Gα are isomorphic to a restriction of scalars of
SL2. By Proposition 2.7, we know that the Schubert varieties of SL2 are normal, so we
conclude by the previous Proposition 3.10. �

The only problem now is that we didn’t yet prove Theorem 2.9 for odd unitary groups,
so now we must find a way of completing it, and this will be done via the rank 1 case of
Theorem 2.12, for which we need an independent proof.

Lemma 3.12. Theorem 2.12 holds for G of rank 1 independently of Theorem 2.9.

Proof. We may and do assume that G is residually split and adjoint, so as to get the full
Iwahori–Weyl group and the full coweight lattice. Let I be a Iwahori O-model dilated
from G. We note that Grsn

G,OE ,≤µ arises as the Stein factorization of the map

Grsn
I,OE ,≤µ → GrG,OE (3.25)

because its fibers are geometrically connected and induce separable field extensions. As-
sume that the Theorem 2.12 holds for I and µ. Then, the geometric fibers of (3.25) have
vanishing higher direct images, as seen by the rationality of semi-normal Schubert vari-
eties, see Theorem 2.6, and induction to treat unions of those like in [FHLR22, Lemma
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4.22]. We deduce that the Stein factorization commutes with base change by [Gör03,
Proposition 3.13]. As ϕ-splitness is preserved under proper pushforward, it is enough to
treat the case of a Iwahori O-model I.

Similarly, given a sequence µ• of conjugacy classes of geometric coweights of G with
reflex field E•, we consider the convolution map

Grsn
I,OE• ,≤µ• → GrI,OE• , (3.26)

whose Stein factorization equals Grsn
I,OE• ,≤µ where µ denotes the sum of the µi. Assume

that Theorem 2.12 holds for I and µi. Then, we can deduce again from the rationality
of Schubert varieties, see Theorem 2.6, the vanishing of the higher direct images of the
geometric fibers of (3.26), and hence the Stein factorization commutes with base change,
again by [Gör03, Proposition 3.13]. Using this and flat descent along OE → OE• , we
conclude that Grsn

I,OE ,≤µ has ϕ-split special fiber (here, we applied reducedness of the
special fiber, see [GL22, Theorem 1.3], to know that the semi-normal local model is
stable under base change of DVRs). In particular, we have reduced the problem to tiny
geometric conjugacy classes µ of coweights in the sense of [AGLR22, Subsection 7.1].

Now, finally we perform some calculations for a Iwahori model I and tiny µ. We are
allowed to replace our adjoint group G by a z-extension with simply connected derived
subgroup and µ by an arbitrary lift to this new group. By Theorem 2.6, we would
know that Theorem 2.12 holds in rank 1 as soon as GrI,k,≤µ is semi-normal. Since its
dimension is at most 2, it suffices to show smoothness of the Schubert varieties GrI,≤w
where `(w) ≤ 2, and that their intersections are reduced. Translating to the neutral
component, we may assume that G is simply connected and w can assume the values
1, s0, s1, s0s1 or s1s0 where the si are the distinct simple reflections. The Demazure
variety GrI,≤(s0,s1) is smooth and its tangent space maps bijectively to the 2-dimensional
k-vector space (Lie(Gs0) + Lie(Gs1))/Lie(I). This shows formal étaleness at the identity
and implies our claim.

Next, to treat reducedness of the intersections, we focus on the smooth k-surfaces
GrI,≤s0s1 with GrI,≤s1s0 . We leave the case G = RFα/FSLFα/F to the reader, because
it is easy to verify and not really needed anyway. So, we have G = RF2α/FSU3,Fα/F2α

and can write local sections of RO/kGsi → GrI,≤si as follows: either xα(z1, 0) with
z1 ∈ νk ⊂ F 0

α if i = 0, or x−α(0, z2) with z2 ∈ µk ⊂ Fα when i = 1, under the condition
that the inverse of λN(ν)µ is a prime element of Oα, see [BT84, 4.3.5]. If we regard z1

and z2 as formal variables, we can look at equation (3.13) and we deduce that the product
xα(z1, 0)x−α(0, z2) defines an element of GrI,≤s1s0 only if g is an integer and λN(f1) is
divisible by ν. Note that g = λN(z1)z2 and f1 = −z1z2 under our assumptions. The first
condition implies that z2

1z2 vanishes, whereas the second implies that z1z2 vanishes. This
equation spreads out to a reduced locally closed subscheme of A2

k, and it implies that the
intersection of GrI,≤s0s1 with GrI,≤s1s0 equals the union of GrI,≤s0 and GrI,≤s1 . �

By Corollary 2.14, we know that the semi-normal O-loop group Rsn
O2
◦/O
G is an ind-

scheme and its special fiber is semi-normal, i.e., it identifies with our original loop group
Rsn
F/kG over k. Once again, we must show that the natural morphism

Rsn
O2
◦/O
G → RO2

◦/O
G (3.27)
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is a formally étale map of formally O-flat ind-schemes, by the O-flat version of Lemma 2.2.
This has to be true in light of Theorem 2.13, but if we prove it independently for some
parahoric model G, then it would also yield Theorem 2.9 for its generic fiber G.

In order to do this, we define again Dist(X,x) for a pointed ind-scheme over O as the
solid O-dual of the ring of formal sections, where we regard O with its t-adic analytic
structure. Note that Dist(X,x) only depends on the flat closure of the formal completion.
We can see that most of our general lemmas on distributions continue to be true over
O provided that we restrict to maps of formally flat pointed ind-schemes over O, most
notably Lemmas 3.2 and 3.4. However, there is no analogue of Lemma 3.3, because
injections of solid O-modules do not necessarily dualize to surjections, e.g., if the cokernel
has torsion. In our concrete situation, we can remedy this failure thanks to the following
explicit calculation with root groups.

Proposition 3.13. Assume G is residually split and that the reductive quotient of Gk is
simply connected. Then, the natural map

Dist(RO2
◦/O
U+) ∗�O Dist(RO2

◦/O
U−)→ Dist(RO2

◦/O
G) (3.28)

is a surjection of solid associative O-algebras.

Proof. Note that the big cell induces a decomposition

Dist(RO2
◦/O
G) = Dist(RO2

◦/O
U−)⊗�

O Dist(RO2
◦/O
T )⊗�

O Dist(RO2
◦/O
U+) (3.29)

of solid O-modules by the O-flat version of Lemma 3.4 and formal flatness of each of the
terms, compare with Lemma 2.11. Similarly, we also have a factorization

Dist(RO2
◦/O
T ) = ⊗�

O,α∈∆Dist(RO2
◦/O
Tα) (3.30)

as solid O-modules, owing to the simply connectedness of G, and a combination again of
Lemmas 2.11 and 3.4. In other words, it is clear that we can reduce to rank 1 groups G.
After enlarging k, these are either isomorphic to a restriction of scalars of SL2 or SU3.
In the first case, G = ROα/OSL2 and it is easy to check (and not really necessary for our
proof of Theorem 2.9 anyway) the surjectivity, so we leave this task to the reader.

If G = RF2α/FSU3,Fα/F2α
, then we can describe the special parahoric model G with

simply connected reductive quotient as follows. Let λ ∈ F 1
α be a trace 1 element of

maximal valuation, µ ∈ F 0
α be an arbitrary element of trace 0. Then, by [BT84, 4.3.5]

the closed subgroups U±α ⊂ G are the unique smooth connected O-models of U±α whose
integral points are given by the subset ν±Oα × µ±1O2α ⊂ Fα × F 0

α, where ν± is any
element such that λN(ν±) equals µ±1tα up to a unit, where tα is a uniformizer for Oα.

Write the base change of the punctured disk O2
◦ along O → Oα (resp. O2α) as Rα

(resp. R2α). Note that we have an exchange equation (3.13) at the formal completions,
which expresses the middle term α∨(1 + g) as a product of points of U±α. If we set
z1 = z3 = 0, then g simplifies to z2z4. Here, z2 ∈ µR2α, z4 ∈ µ−1R2α, so we have
obtained the distributions with coefficients in R2α. Similarly, if we set z1 = z4 = 0, then
g simplifies to λz2N(z3) with z2 ∈ µR2α and z3 ∈ ν−Rα, so we get the distributions with
coefficients in tαR2α. Clearly, Rα is a free R2α-module with basis {1, tα}, so we deduce
the desired surjectivity. �

Corollary 3.14. Theorem 2.9 holds for all groups.
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Proof. We may and do assume that G is simply connected by Lemma 2.10. By étale
descent, we may also assume that G is residually split. Furthermore, by Proposition 3.10
and Corollary 3.11, it suffices to treat the case where G is a restriction of scalars of SU3.
Let G be a special parahoric model of G such that Gk has simply connected reductive
quotient, whose existence is ensured by [FHLR22, Lemma 4.11]. Notice that (3.27) is
a map of formally flat ind-schemes by Corollary 2.14 and Lemma 2.11. Indeed, for the
semi-normal loop group, it is already flat from the beginning and this property passes to
the formal completion using that excellent normal local rings are analytically irreducible.

We are going to show that the semi-normalization map over O is formally étale. It is
an isomorphism over F by étale descent applied to Corollary 3.11 for the split form SL3

of G. In particular, the map

Dist(Rsn
O2
◦/O
G)→ Dist(RO2

◦/O
G) (3.31)

of torsion-free solid O-modules is a monomorphism. But Proposition 3.13 tells us that
it is also surjective, as unipotent loop groups lift to the semi-normalization. We deduce
formal étaleness by the O-flat variant of Lemma 3.2. Passing to the special fibers, we
deduce that Rsn

F/kG→ RF/kG is formally étale, thanks to Lemma 3.12. �
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