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Abstract. We characterize Cohen–Macaulay and ϕ-rational perfect schemes in terms
of their perverse étale Fp-sheaves. Using inversion of adjunction, we prove that suffi-
ciently small Schubert varieties in the Witt affine flag variety are perfections of globally
+-regular varieties, and hence they are ϕ-rational. Our methods apply uniformly to
all affine Schubert varieties in equicharacteristic, as well as classical Schubert varieties,
thereby answering a question of Bhatt. As a corollary, we deduce that scheme-theoretic
local models always have ϕ-split special fiber.
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1. Introduction

Hecke categories, i.e., categories of sheaves on local Hecke stacks HkG , play a major
role in geometric representation theory and in geometric approaches to the Langlands
program. Here G is a parahoric model of a connected reductive group G over a local field
F with residue field k of characteristic p. If one considers F` or Q`-étale sheaves for some
prime ` 6= p, then these categories are well-studied for F of equal or mixed characteristic.
For example, at hyperspecial level one has the geometric Satake equivalence, e.g. [MV07,
Zhu17], and at other parahoric levels there is at least a collection of central sheaves,
e.g. [Gai01, ALWY23]. Recently, it has even become possible to talk about Q- and
Z-linear motivic sheaves on Hecke stacks, e.g. [RS21, CvdHS22, CvdHS24, vdH24].

The situation changes drastically when one considers étale sheaves for ` = p. There is
still a perverse t-structure due to Gabber [Gab04], but its behavior can be quite strange,
as half of the six functors do not preserve constructibility. When F has characteristic p,
the first author constructed a geometric Satake equivalence in [Cas22], where the dual
object is a monoid instead of a group, and also a central functor in [Cas21]. The purpose
of this paper, as the title suggests, is to launch an investigation of these properties when
F has characteristic 0. In this case, the local Hecke stack HkG and the corresponding
affine flag variety FlG exist only canonically as functors on perfect k-algebras.

Let us note that in [CX25] the mod p Hecke category for F of characteristic 0 was
already studied, but with no concern for the perverse t-structure. Thus, our first order
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of business is to investigate IC sheaves in the Hecke category. Toward this direction, we
prove the following general result.

Theorem 1.1. Let k be a perfect field of characteristic p and let X be a connected
perfectly finitely presented k-scheme. Then X is Cohen–Macaulay (resp., ϕ-rational) if
and only if the shifted constant sheaf Fp[dimX] is perverse (resp., perverse and simple).

In [Cas22] it was shown that the above commutative-algebraic properties of a finite-
type k-scheme imply the corresponding properties of perverse Fp-sheaves, but the fact
that the converse holds after passing to the perfection lies much deeper. As it turns
out, Theorem 1.1 was known to experts in the ϕ-singularities community and appeared
in [BBL+23], after we already found an argument independently. We have included our
argument for the benefit of readers unfamiliar with the literature on ϕ-singularities, and
because it differs significantly from the one in [BBL+23] in that we perform most of the
key arguments on the coherent as opposed to topological side. Our notions of Cohen–
Macaulayness and ϕ-rationality for a perfect scheme X, which are in fact properties of
the local rings of X, require the following notions from commutative algebra.

Recall that a noetherian local ring (R,m) is Cohen–Macaulay if the local cohomology
groups H i

m(R) vanish for i < dimR. If R has characteristic p, the absolute Frobenius ϕ
gives H i

m(R) a module structure over the non-commutative polynomial ring R[ϕ]. When
R is also excellent and ϕ-finite, one says that R is ϕ-rational if it is Cohen–Macaulay and
HdimR

m (R) is a simple R[ϕ]-module. In the perfect case, we define Cohen–Macaulayness
and ϕ-rationality in exactly the same way. Since the local cohomology of the perfection
Rperf is the perfection of H i

m(R) with respect to ϕ, these notions capture phenomena
from the noetherian case up to elements annihilated by some iterate of ϕ. We prove
in Lemma 2.21 that Rperf is ϕ-rational if and only if R is ϕ-nilpotent, where the latter
property is a topic of active research in commutative algebra.

The proof of the converse direction for both properties in Theorem 1.1 involves a noe-
therian induction and passage to the strict henselization. To prove Cohen–Macaulayness
we apply an argument already present in [Bha20], which allows us to prove that the
lower local cohomomlogy groups are supported on a geometric point and are holonomic
in the sense of Bhatt–Lurie’s Riemann–Hilbert correspondence [BL19]. In particular,
their vanishing can be checked after passing to ϕ-invariants, where it is guaranteed by
the perversity of Fp[dimX]. To prove ϕ-rationality we also need to invoke a strong
finiteness result for simple ϕ-submodules of the top local cohomology due to Lyubeznik
[Lyu97]. Both arguments utilize Matlis duality in an essential way.

We now return to the affine flag variety FlG . The Bruhat decomposition yields Schubert
subvarieties FlG,≤w indexed by double cosets w of the Iwahori–Weyl group. At this point,
it is natural to formulate the following expectation.

Conjecture 1.2. The perfect Schubert schemes FlG,≤w are ϕ-rational.

Let us present some evidence for this conjecture. If F has characteristic p, this result
follows from [Cas22] for split G and [FHLR22] for general G. If one had an analogue of the
Grauert–Riemenschneider theorem in perfect geometry (which is known for finite-type ϕ-
split varieties), then Cohen–Macaulayness would be a consequence of the triviality of the
higher direct images of the structure sheaf along Demazure resolutions, which was proved
in [CX25]. We do not know of such a result, but for a certain class of sufficiently small
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w, we are able to show using inversion of adjunction that there is a certain deperfection
FlG,≤w,1 which is globally +-regular in the sense of [BMP+23]. This property, which we
explain next, is stronger than ϕ-rationality.

The property of ϕ-rationality is of a local nature, and in particular, it does not descend
along proper covers. In order to get proper descent, one has to define a global variant of
ϕ-rationality, but it is unclear how to proceed in the perfect setting. For classical schemes,
this is well understood via the property of strong ϕ-regularity of Hochster–Huneke [HH89]
and its global variant [Smi00]. In this paper, we prefer to use the closely related property
of global +-regularity, as it carries the advantage of making every Q-divisor integral up
to passing to a cyclic cover. However, new ideas are still required because the proof
strategy in [Cas22, FHLR22] relies on the criterion of Mehta–Ramanathan [MR85]. This
pressuposes the existence of certain theta divisors that Faltings [Fal03] constructs in
equicharacteristic on the natural deperfection of the whole FlG , but such a deperfection
does not exist in mixed characteristic. Let us first state our result, and then we will
explain the various notations and hypotheses.

Theorem 1.3. Assume s• is a reduced word for w, and q• = 1 is s•-permissible. Then
(FlG,≤w,1,∆) is globally +-regular for any Q-divisor ∆ ≤ ∂w,1 with b∆c = 0.

When F has characteristic p each FlG,≤w is canonically isomorphic to the perfection
of a projective k-scheme FlG,≤w,1 (the seminormalization of the affine Schubert variety
in [PR08], see also [HLR24, FHLR22] for the necessity of this functor). In this case, the
hypothesis that q• = 1 is s•-permissible is automatically satisfied for every reduced word
for w. The divisor ∂w,1 is the sum of the Iwahori–Schubert subvarieties in codimension
one for a fixed choice of Iwahori I mapping to G. Moreover, whenever the hypotheses of
Theorem 1.3 are satisfied (even when F has characteristic 0), we deduce in Proposition
4.11 that FlG,≤w,1 is globally ϕ-regular, and compatibility ϕ-split with all of its Schubert
subvarieties. Thus, when F has characteristic p we obtain a new proof of the global
ϕ-regularity of affine Schubert varieties, first shown in [Cas22, FHLR22], but which
avoids the the Mehta–Ramanathan criterion. Moreover, applying this criterion to wildly
ramified groups in [FHLR22] required extra casework, whereas our new proof is uniform
across all groups.

Remark 1.4. Bhatt [Bha12] proved that Schubert varieties in the classical finite flag
variety of GLn in positive characteristic are derived splinters (an alternative name for
globally +-regular), using inversion of adjunction. Bhatt asked in [Bha12, Remarks
7.8 and 7.10] if his methods could be generalized to general groups, and our proof of
Theorem 1.3 answers this question positively. Indeed, all classical Schubert varieties
arise as particular affine Schubert varieties for F of characteristic p. In fact, our proof
also applies in the context of Kac–Moody groups, again without any conditions on w.
We note here that global ϕ-regularity of classical Schubert varieties was known much
earlier by [LRPT06], which used the Mehta–Ramanathan criterion

Let us now explain the permissibility hypothesis in Theorem 1.3, which cannot be
avoided when F has characteristic 0. The first step to prove global +-regularity is
to replace FlG,≤w by its proper modification FlI,≤s• for some reduced word s• for w.
Here I ⊂ G is an Iwahori subgroup, and FlI,≤s• is the Demazure resolution. We then
construct a class of deperfections FlI,≤s•,q• , where q• is a certain s•-permissible sequence
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of powers of p. This notion of permissibility is defined by induction on the length of the
sequence. The factor FlI,≤si,qi in the twisted product FlI,≤s•,q• is the ϕqi-twist of the
canonical Iwahori-equivariant smooth deperfection FlI,≤si,1 ' P1

k of FlI,≤si . In order for
the twisted product to exist when F has characteristic 0, we are forced to twist every new
factor to the right by a nonnegative power of p, which we have no control over. Thus, q•
is is a non-decreasing (and not so rarely increasing) sequence, which ultimately hinders
proving global +-regularity.

If the constant sequence q• = 1 is s•-permissible, then we can carry out inversion of
adjunction. Indeed, a calculation for the boundary pair (FlI,≤s•,q• , ∂s•,q•) reveals that its
anti-canonical divisor is semi-ample (and in this case also big) precisely when q• is non-
increasing, so constant sequences are the optimal scenario. This assumption holds for all
w if F has characteristic p and for all w in the µ-admissible set of Kottwitz–Rapoport
[KR00] associated with some minuscule conjugacy class of geometric coweights µ. The
idea for applying the inversion of adjunction criterion for global +-regularity of pairs of
[BMP+23] is then to slightly perturb the coefficients of the boundary ∂s•,1 in such a way
that the anti-canonical divisor of the pair becomes ample.

Finally, we give an application to local models. Recall that [AGLR22, GL24] prove
the existence and uniqueness of normal flat OE-schemes MG,µ with reduced special fiber
representing a certain closed v-subsheaf of the Beilinson–Drinfeld Grassmannian GrG ,
provided either µ is minuscule or F has characteristic p. In [FHLR22] it was proved for
all groups except wild odd unitary ones that the special fiber is moreover ϕ-split. Now,
we can generalize this to all groups and prove it uniformly. This finishes the problem
of determining the special fiber of MG,µ in full generality and thus Cohen–Macaulayness
is the only property remaining in the above mentioned series of papers for which the
infamous hypothesis “p > 2 or ΦG is reduced” is still needed.

Corollary 1.5. Assume F has characteristic p or µ is minuscule. Then, the special
fiber of MG,µ equals the canonical deperfection AG,µ,1 in the sense of [AGLR22] of the
µ-admissible locus. Moreover, AG,µ,1 is ϕ-split compatibly with every G(O)-stable closed
subscheme.

The idea goes as follows: once we know that Schubert varieties in the µ-admissible
locus have globally +-regular deperfections FlG,≤w,1, we can construct a ϕ-split canonical
deperfection AG,µ,1 of the admissible locus AG,µ. Then, it suffices to prove the coherence
conjecture of [PR08], i.e., we need to compute global sections of certain line bundles
for the previous deperfection and for the generic fiber of MG,µ. The ϕ-splitness yields
higher vanishing of cohomology for ample line bundles, so we get an inclusion-exclusion
type formula in terms of Schubert subvarieties for the global sections dimension. But the
latter can be computed by the Demazure character formula, so it does not change if we
replace G by another group with the same combinatorics. Therefore, we can reduce to
tame G and equicharacteristic F , already handled by Zhu [Zhu14]. We also note that the
corollary above was used in [Lou23] when F has equicharacteristic and π1(G) is p-torsion
free to finish the proof for all G of normality of Schubert varieties embedded in the usual
scheme-theoretic affine flag varieties (i.e., before taking seminormalizations).
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2. Perverse Fp-sheaves and ϕ-singularities

Fix a prime number p. For a scheme X over Fp, let ϕ be the absolute Frobenius
morphism. We will often be concerned with noetherian schemes which are ϕ-finite,
meaning that ϕ∗OX is a finite OX -module. By Kunz’s theorem [Kun76, Theorem 2.5],
a ϕ-finite noetherian ring is excellent. Additionally, a noetherian ϕ-finite scheme admits
a coherent dualizing complex [Gab04, Remark 13.6]. The proof in loc. cit. only applies
when X is affine, which is the only case we will use. Recall also that the perfection of
a scheme X is Xperf = lim(· · · ϕ−→ X

ϕ−→ X). A deperfection of a perfect scheme X is a
scheme X0 equipped with an isomorphism Xperf

0
∼= X.

2.1. Cartier modules. Let R be a ring over Fp and let ϕ∗R be the R-module associated
to ϕ∗OSpec(R). Recall from [BB11] that a Cartier module over R consists of an R-module
M with a map ϕ∗M →M . Homomorphisms between Cartier modules must respect this
map. A Cartier module M is said to be nilpotent if ϕe∗M → M is zero for some e ≥ 0.
Furthermore, a Cartier module is said to be coherent if its underlying R-module is finite.
We have the following decisive structure theorem for Cartier modules.

Theorem 2.1 (Blickle–Böckle). Let R be a noetherian ϕ-finite ring and let M be a
coherent Cartier module.

(1) There exists a finite composition series 0 = M0 ⊂ M1 ⊂ · · · ⊂ Mn = M by
coherent Cartier submodules such that each Mi/Mi+1 is either nilpotent, or non-
nilpotent and simple.

(2) If M is a simple coherent Cartier module then M has a unique associated prime
p ∈ Spec(R). Furthermore, M ⊂Mp, and the latter is a finite-dimensional vector
space over R/p.

Proof. Part (1) is [BB11, Proposition 4.23], and part (2) is proved in [BB11, Propositions
4.14, 4.15]. �

Important examples of coherent Cartier modules include the cohomology sheaves
Hi(ω•R) of dualizing complexes on ϕ-finite noetherian rings. Here the map ϕ∗Hi(ω•R)→
Hi(ω•R) is obtained from exactness of ϕ∗ and the adjoint of the canonical isomorphism
ω•R → ϕ!ω•R from Grothendieck duality.

2.2. ϕ-modules. Let R be an Fp-algebra, and let R[ϕ] be the non-commutative poly-
nomial ring over R in one variable, also denoted ϕ, subject to the relation ϕa = apϕ
for all a ∈ R. A left R[ϕ]-module is the same as an R-module M with an R-linear map
M → ϕ∗M ; note that the map goes in the direction opposite to that of Cartier modules.
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We recall a decisive structure result for R[ϕ]-modules closely related to Theorem 2.1.
As in the case of Cartier modules, we say that an R[ϕ]-module M is nilpotent if M →
ϕe∗M is zero for some e ≥ 0. Similarly, an R[ϕ]-moduleM is co-finite if it is Artinian as an
R-module. Important examples of co-finite R[ϕ] modules include the local cohomology
groups H i

m(R) of noetherian local Fp-algebras (R,m) [BS13b, Theorem 7.1.3].

Theorem 2.2 (Lyubeznik). Let (R,m) be a noetherian local Fp-algebra and let M be a
co-finite R[ϕ]-module.

(1) M admits a finite composition series 0 = M0 ⊂M1 ⊂ · · · ⊂Mn = M by co-finite
R[ϕ]-submodules such that eachMi/Mi+1 is either nilpotent, or non-nilpotent and
simple.

(2) The collection of non-nilpotent simple subquotients of M is independent of the
composition series.

Proof. See [Lyu97, Theorem 4.7]. �

It is worth mentioning the following special case of Lyubeznik’s theorem, which has
been proved via different means by Hartshorne–Speiser, Lyubeznik, Gabber, and Bhatt–
Blickle–Lyubeznik–Singh–Zhang.

Corollary 2.3. Let (R,m) be a noetherian local Fp-algebra and let M be a co-finite
R[ϕ]-module. Then some power of ϕ annihilates

{a ∈ H i
m(R) : ϕe(a) = 0 for some e > 0}.

Proof. This follows from Theorem 2.2; see also [HS77, Proposition 1.11], [Lyu97, Propo-
sition 4.4], [Gab04, Lemma 13.1] or [BBL+23, Corollary 4.24]. �

We conclude by explaining a precise relation between Cartier modules and R[ϕ]-
modules. Suppose that (R,m) is a complete, local, noetherian and ϕ-finite Fp-algebra.
Following [Sta23, Tag 0A82], we normalize the dualizing complex ω•R so that RΓm(ω•R) =
E[0] lies in degree 0, in which case E is an injective hull of R/m. Recall that Matlis
duality M 7→ HomR(M,E) gives an anti-equivalence between coherent and Artinian R-
modules. Then Matlis duality also induces an anti-equivalence between coherent Cartier
modules and co-finite R[ϕ]-modules [BB11, Proposition 5.2]. The integer d := dimR
is the largest integer such that H−d(ω•R) 6= 0 [Sta23, 0AWN]; the cohomology sheaf
ωR := H−d(ω•R) is called the dualizing sheaf. For each i there is a canonical isomorphism
HomR(H−i(ω•R), E) ∼= H i

m(R) even if R is not complete, e.g. see [BS13a, 10.2.19], [Sta23,
Tag 0AAK].

2.3. Perverse Fp-sheaves. For a schemeX over Fp letD(X,Fp) be the derived category
of étale Fp-sheaves on X, and let Db

c(X,Fp) be the bounded constructible subcategory.
In this subsection we fix a perfect field k of characteristic p. Every scheme of finite type
over k is automatically ϕ-finite.

Definition 2.4. Let X be a k-scheme of finite type. For each point x ∈ X, fix a strict
henselization Osh

x of the local ring at x, and let ix : x → Spec(Osh
x ) be the inclusion

of the closed point. We define the full subcategory pD≤0(X,Fp) (resp. pD≥0(X,Fp))
of D(X,Fp) consisting of F• ∈ D(X,Fp) such that Hn(i∗xF•) = 0 for all x ∈ X and
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n > −dim {x} (resp. F• has bounded below cohomology sheaves and Hn(Ri!xF•) = 0

for all x ∈ X and n < −dim {x}).

The following special case of a theorem of Gabber implies that the subcategories above
give a t-strucutre on D(X,Fp), cf. [EK04b, Theorem 11.5.4]. We call objects in the heart
perverse Fp-sheaves.

Theorem 2.5 (Gabber). Let X be a k-scheme of finite type.
(1) The pair (pD≤0(X,Fp), pD≥0(X,Fp)) gives rise to a t-structure on D(X,Fp).
(2) The t-structure above restricts to a t-structure on Db

c(X,Fp).
(3) Every perverse subquotient of a constructible perverse Fp-sheaf is constructible,

i.e. lies in Db
c(X,Fp).

(4) Every constructible perverse Fp-sheaf has finite length.

Proof. See [Gab04, Theorem 10.4, Corollary 12.4]. �

The t-structure on Db
c(X,Fp) has also been studied in [Cas22, BBL+23]. By the

topological invariance of the small étale site [Sta23, Tag 04DY], we have a canonical
equivalence Db

c(X,Fp) ∼= Db
c(X

perf ,Fp), so we also get a t-structure for perfections of
k-schemes of finite type.

We now recall the notion of intermediate extension for perverse Fp-sheaves. Let F•
be a constructible perverse Fp-sheaf on U , and let j : U → X be an open immersion into
a k-scheme of finite type. By taking perverse truncations of Rj∗ and Rj!, we may define

j!∗F• := Im (pj!F• → pj∗F•).

Note that while pj∗F• may not be constructible, both pj!F• and j!∗F• are constructible.
The intermediate extension j!∗F• is characterized as the unique perverse extension of
F• with no quotients or subobjects supported on X \ U . If i : X \ U → X is the
inclusion (with the reduced scheme structure), the latter conditions are equivalent to
i∗F• ∈ pD≤−1(X \ U,Fp) and Ri!(F•) ∈ pD≥1(X \ U,Fp), respectively [Cas22, lemma
2.7].

2.4. The Riemann–Hilbert correspondence. We now recall the Riemann–Hilbert
correspondence of Bhatt–Lurie [BL19]. Let R be an Fp-algebra and let (R,ϕ) be the
ring R regarded as an R[ϕ]-module via the Frobenius. For an R-algebra S, extension of
scalars provides a functor from R[ϕ]-modules to S[ϕ]-modules, which is used implicitly
in the following definition taken from [BL19, Construction 2.3.1].

Definition 2.6. Let D(R[ϕ]) be the derived category of R[ϕ]-modules. Define the func-
tor

Sol(−) := RHomD(R[ϕ])((R,ϕ),−) : D(R[ϕ])→ D(Spec(R),Fp).

Informally, Sol can be thought of as the derived functor of ϕ-invariants. The functor
Sol is not an equivalence of categories because D(R[ϕ]) is too large. To solve this issue
in the constructible case, Bhatt–Lurie define a notion of holonomicity [BL19, Definition
4.1.1.]. A holonomic R[ϕ]-module is an R[ϕ]-module isomorphic to one of the form

Mperf := colim(M → ϕ∗M → ϕ2
∗M → · · · )
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for an R[ϕ]-module M which is finitely presented as an R-module. Note that a holo-
nomic R[ϕ]-module is in particular perfect, meaning that M → ϕ∗M is an isomorphism.
Restriction of scalars along R → Rperf identifies the categories of perfect R[ϕ]-modules
and perfect Rperf [ϕ]-modules [BL19, Proposition 3.4.3], which by the following theorem
is closely related to the topological invariance of the small étale site.

Theorem 2.7 (Bhatt–Lurie). Let Dhol(R[ϕ]) ⊂ D(R[ϕ]) be the full subcategory of com-
plexes with holonomic cohomology sheaves. Then Sol restricts to an equivalence of cat-
egories Dhol(R[ϕ]) ∼= Db

c(Spec(R),Fp) which is t-exact for the standard t-structures on
the source and target

Proof. See [BL19, Theorem 7.4.1, Corollary 12.1.7]. �

By t-exactness, if M is a holonomic R[ϕ]-module then Sol(M) is the étale sheaf on
Spec(R) whose value on an étale R-algebra S is

Sol(M)(S) = {x ∈M ⊗R S : ϕ(x) = x}.

Remark 2.8. In [BBL+23] the authors use a different definition of the perverse t-
structure on Db

c(Spec(R),Fp), in terms of the Riemann–Hilbert correspondence and a
perverse t-structure on coherent sheaves, but the two agree by [BBL+23, Theorem 4.43].
Correspondingly, our proofs of Theorem 2.17 and Theorem 2.25 below are quite different
from their analogues [BBL+23, Remark 4.39, Corollary 5.15]. Our Theorem 2.25 also
differs from [BBL+23, Corollary 5.15] in that we allow a non-complete base and hence
have to eliminate the possibility of branching behavior (with the help of [DMP23]).

2.5. Cohen–Macaulayness. There are numerous equivalent definitions of Cohen–Macaulayness
for a noetherian local ring, for example involving regular sequences, local cohomology,
or a dualizing complex. While there is no standard definition of Cohen–Macaulayness
in the non-noetherian setting, the one in [Bha20, Definition 2.1] will be useful here (see
also [Bha20, Remark 2.4]).

Definition 2.9. Let X be a topologically noetherian scheme. We say that X is Cohen–
Macaulay if for every local ring (R,m) on X, the (Zariski) local cohomology groups
H i

m(R) := RiΓ{m}(OSpec(R)) vanish for i < dimR.

If R is a noetherian local Fp-algebra thenH i
m(R) has a canonical R[ϕ]-module structure

as the cohomology of a Koszul complex of R[ϕ]-modules [Sta23, Tag 0956]. In this case,
H i

m(R) is finitely generated as an R[ϕ]-module, and since it is Artinian as an R-module
it is even a module over the completion R̂. Furthermore, if M is an R-module (R is still
noetherian) we have H i

m(M) = colimnExtiR(R/mn,M) [Sta23, Tag 0955].

Lemma 2.10. Let (R,m) be the perfection of a noetherian local Fp-algebra (R0,m0) of
dimension d with normalized dualizing complex ω•R0

.
(1) H i

m(R) = 0 if and only if H i
m0

(R0) is nilpotent.
(2) Hd

m(R) 6= 0.
(3) If H i

m(R) = 0 for all i < d then R is equidimensional.
(4) If R0 is ϕ-finite then H i

m0
(R0) is nilpotent if and only if H−i(ω•R0

) is nilpotent.
(5) If R0 is ϕ-finite and H i

m(R) = 0 for all i < d, then Spec(R) is Cohen–Macaulay
in the sense of Definition 2.9.
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Remark 2.11. A noetherian local Fp-algebra (R0,m0) such that H i
m0

(R0) is nilpotent
for i < dimR0 is called weakly ϕ-nilpotent [Mad19], see also [PQ19, Quy19].

Proof. Since R is an R0-module and Spec(R) ∼= Spec(R0) then H i
m(R) = H i

m0
(R). Next,

H i
m0

(R) = colimnExtiR0
(R0/m

n
0 , colimeϕ

e
∗R0). By taking a resolution of R0/m

n
0 by finite

free R0-modules and using that filtered colimits are exact [Sta23, Tag 00DB], the inner
colimit over e commutes with ExtiR0

(R0/m
n
0 ,−). Then by exchanging the colimits and

using exactness of ϕ∗ to commute the latter with H i
m0

(−), we get

H i
m(R) = colim

e
ϕe∗H

i
m0

(R0) = H i
m0

(R0)perf . (2.1)

Thus, H i
m(R) = 0 if and only if every element of H i

m0
(R0) is annihilated by some power

of ϕ. Now (1) follows from Corollary 2.3.
For (2), we consider two cases. If d = 0 then H0

m(R) = R is nonzero. On the other
hand, if d > 0, then by (1) we need only show that Hd

m0
(R0) is not nilpotent. But if

Hd
m0

(R0) were nilpotent, then since it is finitely generated as an R0[ϕ]-module, it would
also be finitely generated as an R0-module, which is impossible [BS13b, Corollary 7.3.3].

Part (3) follows from the proof of [PQ19, Proposition 2.8(3)]; we reproduce the ar-
gument here for completeness. If R is not equidimensional, let p ⊂ R0 be a minimal
prime such that n := dimR0/p < d = dimR0, and let I be the intersection of the other
minimal primes. Then we have an exact sequence of R0[ϕ]-modules

0→ R0 → R0/p⊕R0/I → R0/(p + I)→ 0

where dimR0/(p + I) < n. Applying RΓ{m0} gives a surjection Hn
m0

(R0) → Hn
m0

(R0/p)
by [Sta23, Tag 0DXC]. This implies that Hn

m0
(R0/p) is nilpotent, which contradicts part

(2).
Next, we note that if R0 is complete then (4) follows immediately from Matlis duality.

Remarkably this statement is true even if R0 is not complete, as was observed in [ST17,
Lemma 2.3]. The argument is similar to [Sch09, Proposition 4.3], using that the double
Matlis duality functor is isomorphic to (−) ⊗R0 R̂0 on finite R0-modules, and faithful
flatness of R0 → R̂0; we refer to loc. cit for more details.

For each prime p ⊂ R0, the localization (ω•R0
)p is a dualizing complex for (R0)p, and

since R0 is equidimensional, (ωR0)p is a dualizing sheaf for (R0)p [Smi93, Proposition
2.3.2]. Thus, (5) follows from (4). �

Since H i
m(R) = H i

m0
(R), then H i

m(R) has a canonical R[ϕ]-module structure as the
cohomology of a Koszul complex, constructed from finitely many generators of m up
to radical, independent of the chosen deperfection. The canonicity of the R[ϕ]-module
structure can also be deduced by noting that the action of ϕ comes from applying H i

m(−)
to the Frobenius map R → ϕ∗R. Furthermore, H i

m(R) is a perfect R[ϕ]-module in the
sense of [BL19, Definition 3.2.1].

We now introduce some notation for working with perfections. If R is an Fp-algebra
and r ∈ R, we denote by r1/pe ∈ Rperf the peth root. IfM is an R[ϕ]-module andm ∈M ,
we denote by ϕ−e(m) ∈ Mperf the image of m under the map ϕe∗M → Mperf . We use
this notation in the proof of the following structure result for perfect ϕ-modules.

Proposition 2.12. Let (R,m) be the perfection of a noetherian local Fp-algebra (R0,m0).
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(1) The functor M0 7→Mperf
0 from R0[ϕ]-modules to R[ϕ]-modules is exact.

(2) If M0 is a co-finite R0[ϕ]-module then Mperf
0 has finite length as an R[ϕ]-module.

(3) IfM0 is a co-finite, non-nilpotent and simple R0[ϕ]-module thenMperf
0 is a simple,

nonzero R[ϕ]-module.

Proof. Part (1) follows from the exactness of ϕ∗. For (2), we take the perfection of a
composition series for M0 as in Theorem 2.2. This kills the nilpotent subqoutients, so
(2) will then follow from (3). For (3), let M := Mperf

0 , and let m ∈ M be nonzero. We
need to show that R[ϕ] · m = M . Write m = ϕ−e(m′) for some m′ ∈ M0 and e ≥ 0.
It suffices to show that for all n ∈ M0 and f ≥ 0, we have ϕ−e−f (n) ∈ R[ϕ] · m. By
simplicity R0[ϕ] · ϕf (m′) = M0, so there exist ri ∈ R0 such that

∑
i ri · ϕi+f (m′) = n.

Then we conclude since
∑

i r
1/pe+f

i · ϕi(m) = ϕ−e−f (n). �

The following result is the key input in the proof of Theorem 2.17 below.

Proposition 2.13. Let (R,m) be the perfection of a ϕ-finite noetherian local Fp-algebra
(R0,m0). Suppose that R is equidimensional, the punctured spectrum of (R,m) is Cohen–
Macaulay, and R/m is algebraically closed. Then Spec(R) is Cohen–Macaulay if and only
if for all i < dimR, there does not exist a nonzero element x ∈ H i

m(R) such that ϕ(x) = x.

Proof. The necessity of the condition on ϕ-fixed elements is clear. For sufficiency, by
Lemma 2.10 we may suppose for contradiction that that H−i(ω•R0

) has a non-nilpotent
simple Cartier subquotient M for some i 6= dimR. By Theorem 2.1 and our as-
sumption on the punctured spectrum, the unique associated prime of M must be m0,
so M has finite length as an R0-module. Since M was arbitrary, H−i(ω•R0

) has fi-
nite length as an R0-module up to nilpotents. Let E be an injective hull of R0/m0.
Then HomR0(H−i(ω•R0

), E) ∼= H i
m0

(R0), even as R0[ϕ]-modules [BB11, Lemma 5.1], so
H i

m0
(R0) has finite length as an R0-module up to nilpotents.

Now by Proposition 2.12, H i
m(R) has a finite composition series with holonomic sub-

qoutients in the sense of [BL19, Definition 4.1.1]. Since the abelian category of holo-
nomic R0[ϕ]-modules is closed under extensions [BL19, Corollary 4.3.3, Remark 3.2.2],
then H i

m(R) is a holonomic R0-module which is moreover set-theoretically supported on
Spec(R/m) (holonomicity can also be deduced from [Bha20, Lemma 2.16]). By construc-
tion the functor Sol is compatible with pullback, so that Sol(H i

m(R)) is an étale sheaf
supported on Spec(R/m). Since R/m is algebraically closed, an étale sheaf vanishes if
and only if its global sections vanish. Now we conclude using that Sol is an equivalence
when restricted to holonomic modules by Theorem 2.7. �

Lemma 2.14. Let (R,m) be a noetherian local ring which is equidimensional and uni-
versally catenary. Let R→ S be an étale ring map and let q be a prime of S lying above
m. Then the localization Sq is equidimensional and dimSq = dimR.

Proof. Let q0 be a minimal prime of S contained in q. Then p0 := R ∩ q0 is minimal
by flatness, and R/p0 is universally catenary by [Sta23, Tag 00NK]. By the dimension
formula [Sta23, Tag 02IJ] applied to the ring extension R/p0 ⊂ S/q0, we have ht(m/p0) =
ht(q/q0). �

Lemma 2.15. Let (R,m) be a local Fp-algebra. Then if R satisfies any of the following
three properties, so does the strict henselization (Rsh,msh).
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(1) R is noetherian.
(2) R is ϕ-finite.
(3) R is excellent and equidimensional.

Proof. Property (1) is part of [Gro67, Proposition 18.8.8]. Property (2) is in the proof
of [BCRG+19, Theorem 4.1], the point being that Rsh is an ind-étale R algebra, so
ϕ∗R ⊗R Rsh = ϕ∗R

sh. For property (3), excellence is preserved by the last remark in
[FK88, Ch. 1 §1], and it remains to prove equidimensionality.

Let q0 be a minimal prime of Rsh. Then p0 := R ∩ q0 is minimal by flatness. As in
[Sta23, Tag 06LK], write Rsh = colimiRi as a direct limit of local rings Ri which are
localizations of étale R-algebras faithfully flat over R. Then Ri → Rsh is faithfully flat
for all i by [Sta23, Tag 00U7, Tag 05UT]. We have the minimal primes pi := Ri ∩ q0 in
the Ri. By prime avoidance, for all large enough i, q0 is the only minimal prime of Rsh

lying over pi. Fix such an i and let C = (Q0 ⊂ · · · ⊂ Qn) be a maximal chain of primes
in Rsh/piR

sh. By faithful flatness of Ri/pi → Rsh/pi and the going down property, we
have n ≥ dimRi/pi. But by Lemma 2.14, dimRi/pi = dimR. Since dimR = dimRsh

[Sta23, Tag 06LK], this implies that the preimage C∩Rsh also a maximal chain of primes
in Rsh. By our choice of i, the minimal prime of C ∩ Rsh is q0. Thus, for an arbitrary
minimal prime q0 we have exhibited a chain C of primes starting at q0 and of length
dimRsh, so Rsh is equidimensional. �

Lemma 2.16. Let (R,m) be the perfection of a noetherian local Fp-algebra, and let
(Rsh,msh) be the strict henselization.

(1) H i
msh(Rsh) = H i

m(R)⊗R Rsh.

(2) H i
m(R) = 0 if and only if H i

msh(Rsh) = 0.
(3) If the punctured spectrum of (R,m) is Cohen–Macaulay, so is the punctured spec-

trum of (Rsh,msh).

Proof. It follows from topological invariance of the small étale site [Sta23, Tag 04DY] that
perfection commutes with strict henselization, so that Rsh is topologically noetherian.
Since msh = mRsh then H i

msh(Rsh) = H i
m(Rsh). Via the description of H i

m(R) as the
cohomology of a Koszul complex of R-modules, (1) and (2) follow from faithful flatness
of R → Rsh [Sta23, Tag 07QM]. For (3), let q be a non-maximal prime of Rsh, and let
p be its preimage in R. We claim that qRsh

q = pRsh
q and dimRsh

q = dimRp. Granting
these claims, H i

q(R
sh
q ) = H i

p(Rp)⊗Rsh
q and (3) follows.

To prove the claims, use [Sta23, Tag 06LK] to write Rsh = colimiRi as a direct limit of
local rings Ri which are localizations of étale R-algebras. If pi is the preimage of q in Ri,
then Rsh

q = colimi(Ri)pi . We have pi(Ri)pi = p(Ri)pi by [Sta23, Tag 00U4], so the first
claim follows. For the claim about dimensions, note that dimRsh

q ≥ dimRp by faithful
flatness and the going down property. For the other direction, if q0 ⊂ q1 ⊂ · · · ⊂ qn = q
is a chain of primes in Rsh, then for some i this restricts to a chain of primes in Ri of the
same length. Now we conclude since dim(Ri)pi = dimRp by [Sta23, Tag 07QP]. �

We now come to the main result of this subsection. In the proof, we use the Artin–
Schreier sequence

0→ Fp → OSpec(R)
ϕ−1−−→ OSpec(R) → 0 (2.2)
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to translate between quasi-coherent cohomology and étale cohomology. This sequence is
exact in the étale topology on Spec(R) for any Fp-algebra R. If (R,m) is the perfection of
a local Fp-algebra R0 then OSpec(R) may be viewed as a quasi-coherent sheaf on Spec(R0),
and then (2.2) is also exact in the étale topology on Spec(R0). In particular, if R0 is
noetherian then RiΓ{m}(OSpec(R)) = H i

m0
(R) is the same in both the Zariski and étale

topology by [Sta23, Tag 04DY] and descent for quasi-coherent sheaves.

Theorem 2.17. Let k be a perfect field of characteristic p and let X be a scheme iso-
morphic to the perfection of a connected finite-type k-scheme. Then the following are
equivalent.

(1) X is Cohen–Macaulay in the sense of Definition 2.9.
(2) The shifted constant sheaf Fp[dimX] ∈ Db

c(X,Fp) is perverse.
Furthermore, X is equidimensional in both cases.

Proof. We first show that (1) implies (2). By Lemma 2.10, X is equidimensional. It is
immediate that Fp[dimX] ∈ pD≤0(X,Fp). To prove that Fp[dimX] ∈ pD≥0(X,Fp), fix
a point x ∈ X. Let (R,m) be the strict henselization of the corresponding perfect local
ring. Let d := dimR, which also agrees with the dimension before strict henselization
[Sta23, Tag 06LK]. By Lemma 2.16, (1) is equivalent to the statement that H i

m(R) = 0
for all i < d and points x ∈ X. On the other hand, as X is equidimensional, (2) is
equivalent to the statement that for all points x, we have Hi(Ri!xFp) = 0 for i < d,
where ix : x→ Spec(R) is the inclusion of the closed point. Since x is a geometric point,
Hi(Ri!xFp) = RiΓ{m}(Fp). Now the fact that (1) implies (2) follows from applying RΓ{m}
to the Artin–Schreier sequence (2.2).

Next, we show that (2) implies X is equidimensional. A straightforward argument
using the Artin–Schreier sequence as above shows that if Y is Cohen–Macaulay, irre-
ducible, and of finite-type over k, then Fp[dimY ] ∈ Db

c(Y,Fp) is perverse. Now let X0 be
a deperfection of X by a finite-type k-scheme, which we may assume is reduced. Since X0

is of finite type over the perfect field k, we may let Y be a smooth dense open subscheme
of X0, so the perversity of Fp[dimY ] implies that X0 is equidimensional.

To show that (2) implies (1), we proceed by descending induction on dim {x}. By
Lemma 2.16, it suffices to show the strict henselization (R,m) of the local ring at x
satisfies H i

m(R) = 0 for i < d := dimR = dimX − dim {x}, and we may assume the
punctured spectrum of (R,m) is Cohen–Macaulay. By Lemma 2.15 the hypotheses of
Proposition 2.13 are satisfied, so we are reduced to checking that H i

m(R) has trivial
ϕ-invariants for i < d. But this condition follows from induction and the long exact
sequence obtained from applying RΓ{m} to the Artin–Schreier sequence (2.2), together
with the perversity of Fp[dimX]. �

2.6. ϕ-rationality. Next we discuss a perfect notion of ϕ-rationality. Recall that by
a theorem of Smith [Smi97], an excellent local Fp-algebra (R0,m0) is ϕ-rational if and
only if it is Cohen–Macaulay and HdimR0

m0
(R0) is a simple R0[ϕ]-module (this differs

from the original definition in terms of tight closure, cf. [FW89, HH94]). One of the
present authors showed in [Cas22, Theorem 1.7] that if X is an irreducible scheme of
finite type over an algebraically closed field, all of whose local rings are ϕ-rational, then
Fp[dimX] is simple as a perverse sheaf. In the opposite direction, we will show that if
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Fp[dimX] is simple, then Xperf is Cohen–Macaulay and HdimR0
m0

(R0)perf is simple. The
latter properties are encapsulated by the following definition.

Definition 2.18. Let X be the perfection of a noetherian ϕ-finite Fp-scheme. We say
that X is ϕ-rational if it is Cohen–Macaulay in the sense of Definition 2.9, and, for
every local ring (R,m) on X, the top local cohomology group HdimR

m (R) is a simple
R[ϕ]-module.

It will be useful to characterize ϕ-rationality of a perfect scheme in terms of a prop-
erty of one (equivalently, every) deperfection. The latter property turns out to be ϕ-
nilpotence, first introduced by Blickle–Bondu [BB05] under the name close to F -rational,
and further studied e.g. in [ST17, PQ19, DMP23, KMPS23].

Definition 2.19. Let (R,m) be a ϕ-finite noetherian local Fp-algebra of dimension d.
(1) The tight closure of the zero submodule in Hd

m(R), denoted 0∗
Hd

m(R)
, is the R[ϕ]-

submodule consisting of all elements x ∈ Hd
m(R) such that there exists some

c ∈ R not contained in any minimal prime with the property that cϕe(x) = 0 for
all e� 0.

(2) The ringR is said to be ϕ-nilpotent if each of the theR[ϕ]-modulesH0
m(R), . . . ,Hd−1

m (R), 0∗
Hd

m(R)

is nilpotent.

By [PQ19, Proposition 2.8 (2)], R is ϕ-nilpotent if and only if its reduction is ϕ-
nilpotent, so we will usually assume R is reduced. To relate this notion to coherent
objects, note that Matlis duality gives a canonical pairing f : Hd

m(R) ⊗R̂ ωR̂ → E. The
parameter test module τ(ωR) ⊂ ωR is the Cartier submodule consisting of all η ∈ ωR
such that f(x ⊗ η) = 0 for all x ∈ 0∗

Hd
m(R)

. The parameter test module is well-behaved
under localization [HT04, Proposition 3.1] (cf. [Bli13, Proposition 3.2 (e)]), completion
[HT04, Proposition 3.2], and more generally under flat base change when the residue field
extension is separable [ST17, Lemma 1.5]. By construction, 0∗

Hd
m(R)

is the Matlis dual of
ωR/τ(ωR), even if R is not complete. When combined with Lemma 2.10, the following
gives a characterization of ϕ-nilpotence in terms of ω•R.

Lemma 2.20. Let (R,m) be a reduced, ϕ-finite noetherian local Fp-algebra of dimension
d. Then 0∗

Hd
m(R)

is nilpotent if and only if ωR/τ(ωR) is nilpotent.

Proof. It is observed [ST17, Lemma 2.3] that this follows from an argument similar to
[HT04, Lemma 2.1]. �

Lemma 2.21. Let (R,m) be the perfection of a ϕ-finite noetherian local Fp-algebra
(R0,m0) of dimension d. Then the following are equivalent.

(1) Spec(R) is ϕ-rational in the sense of Definition 2.19.
(2) Spec(Rsh) is ϕ-rational in the sense of Definition 2.19.
(3) R0 is ϕ-nilpotent.
(4) Rsh

0 is ϕ-nilpotent.
Furthermore, if any of the above conditions is satisfied then R is geometrically unibranch.

Proof. By [PQ19, Proposition 2.8] we may assume that R0 is reduced. The equivalence
of (3) and (4) then follows from Lemma 2.16 and Lemma 2.20, together with the com-
patibility of τ(ωR0) and its structure map as a Cartier module under faithfully flat base
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change to Rsh
0 as in [ST17, Proposition 2.4 (4)], cf. [KMPS23, Theorem 4.4]. Once we

prove the equivalence of (1) and (3), the equivalence with (2) will then follow.
First suppose that R0 is ϕ-nilpotent. Then the completion R̂0 is also ϕ-nilpotent by

[PQ19, Proposition 2.8 (4)]. Thus R̂0 is a domain by [DMP23, Theorem 3.1], and after
the equivalence of (1)-(4) is established, loc. cit. will also imply the final claim about
geometric unibranchedness. By [Smi93, Theorem 3.1.4], 0∗

Hd
m0

(R0)
is the unique maximal

proper R0[ϕ]-submodule of Hd
m0

(R0). Since this submodule is nilpotent, then Proposition
2.12 implies that Hd

m(R) is a simple R[ϕ]-module. Furthermore, H i
m(R) = 0 for i < d

by Lemma 2.10. For every prime p ⊂ R0 the localization (R0)p is ϕ-nilpotent by [ST17,
Proposition 2.4 (3)] or [PQ19, Corollary 5.17], so the same arguments apply to (R0)p and
hence Spec(R) is ϕ-rational.

Now suppose that Spec(R) is ϕ-rational. Then H i
m0

(R0) is nilpotent for i < d and
R0 is equidimensional by Lemma 2.10. By [Bli04, Corollary 3.9] (and the surrounding
discussion if R0 is not complete), 0∗

Hd
m0

(R0)
is the intersection of the maximal proper R0[ϕ]-

submodules of Hd
m0

(R0). Furthermore, the quotient of Hd
m0

(R0) by each of these maximal
proper R0[ϕ]-submodules is non-nilpotent by [Bli04, Theorem 3.8]. Since Hd

m0
(R0) is

simple up to nilpotents then 0∗
Hd

m0
(R0)

must be nilpotent, so R0 is ϕ-nilpotent. �

Lemma 2.22. Let (R,m) be the perfection of a ϕ-finite noetherian local Fp-algebra
(R0,m0). If the punctured spectrum of (R,m) is ϕ-rational, then so is the punctured
spectrum of (Rsh,msh).

Proof. By Lemma 2.21 the punctured spectrum of (R0,m0) is ϕ-nilpotent, and it suffices
to show the same is true of (Rsh

0 ,m
sh
0 ). We can assume R0 is reduced. If q ⊂ Rsh

0 is a
non-maximal prime then it lies over some non-maximal prime p ∈ R0. The map of local
rings ((R0)p, p(R0)p)→ ((Rsh

0 )q, q(Rsh
0 )q) is faithfully flat and the residue field extension

is separable (for separability, use that Rsh
0 is a filtered colimit of étale R0-algebras [Sta23,

Tag 04GW] and apply [Sta23, Tag 00U4]). Since (R0)p is ϕ-nilpotent, so is (Rsh
0 )q by

[ST17, Proposition 2.4 (4)]. �

The following results generalizes [ST17, Proposition 2.5] to the case where the deper-
fected punctured spectrum of (R0,m0) is ϕ-nilpotent instead of ϕ-rational.

Proposition 2.23. Let (R,m) be the perfection of a ϕ-finite noetherian local Fp-algebra
(R0,m0) of dimension d > 0. Suppose that R is equidimensional, the punctured spectrum
of (R,m) is ϕ-rational, and R/m is algebraically closed. Then Spec(R) is ϕ-rational
if and only if for all i, there does not exist a nonzero element x ∈ H i

m(R) such that
ϕ(x) = x.

Proof. First suppose that Spec(R) is ϕ-rational. We may assume that R0 is reduced.
By Lemma 2.13 we only need to deal with the conditions on Hd

m(R). As in the proof of
Lemma 2.21, R0 is a domain and Hd

m0
(R0) has a unique simple R0[ϕ]-module quotient

M0, which is also non-nilpotent. We claim that AnnR0(M0) = (0). This follows from
AnnR̂0

(M0) = (0), which in turn follows from the fact that Matlis duality preserves
annihilators [BS13a, 10.2.14] and torsion-freeness of the dualizing sheaf ωR̂0

[Sta23, Tag
0AWK]. Since R is ϕ-rational then Hd

m(R) = Mperf
0 , and it follows that AnnR(Hd

m(R)) =
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(0). Now if there exists a nonzero x ∈ Hd
m(R) with ϕ(x) = x, then by simplicity x

generates Hd
m(R) as an R-module. But every element of Hd

m(R) is also annihilated by
some collection of elements which generate m up to radical, so m = (0), a contradiction
since d > 0.

Now suppose the punctured spectrum of (R0,m0) is ϕ-nilpotent. Again, we only
need to deal with the conditions on Hd

m(R), and R0 is equidimensional by Lemma 2.10.
For contradiction we may assume that R0 is reduced and ωR0/τ(ωR0) is non-nilpotent
(Lemma 2.20). Let M be a simple non-nilpotent Cartier subqoutient of ωR0/τ(ωR0),
and let p ⊂ R0 be its unique associated prime (Theorem 2.1). By the compatibility
of τ(ωR0) with localization [HT04, Proposition 3.1], our assumption on the punctured
spectrum implies p = m0. Now we conclude as in the proof of Proposition 2.13. Briefly,
the Matlis dual of ωR0/τ(ωR0) is 0∗

Hd
m0

(R0)
, which therefore has finite length as an R0-

module up to nilpotents. Thus, the perfection of 0∗
Hd

m0
(R0)

inside Hd
m(R) is a holonomic

R0-module whose image under Sol is an étale sheaf supported on Spec(R/m). Since
R/m is algebraically closed, the condition on ϕ-fixed elements implies that 0∗

Hd
m0

(R0)
is

nilpotent. �

Lemma 2.24 (Emerton–Kisin). Let X be a smooth irreducible scheme of finite type over
a perfect field k. Let L be an étale local system of Fp-vector spaces on X. Then L[dimX]
is simple as a perverse sheaf if and only if it is simple as a local system.

Proof. The property of being perverse is étale-local so that Theorem 2.17 implies L[dimX]
is perverse. The part about simplicity follows from the claim that every perverse subsheaf
of L[dimX] is again a shifted local system. Indeed, Gabber’s result [Gab04, Corollary
12.4] implies every perverse subsheaf is constructible, and then there are multiple ways
to proceed; here we sketch the argument of Emerton–Kisin in [EK04a, Corollary 4.3.3].
Via their Riemann–Hilbert correspondence, L[dimX] corresponds to a unit ϕ-crystal,
i.e., an OX [ϕ]-module M , locally free of finite rank over OX , where the unit condition
means that the adjoint map ϕ∗M → M is an isomorphism. Their correspondence is a
perverse t-exact anti-equivalence, so that perverse subsheaves of L[dimX] correspond to
unit OX [ϕ]-module qoutients of M . Then the key input is that any such quotient is is
locally free [EK04a, Proposition 1.2.3], so that its Riemann–Hilbert partner is a shifted
local system. �

Our main result in this subsection characterizes those schemes for which a simple local
system corresponds to a simple perverse sheaf.

Theorem 2.25. Let k be a perfect field of characteristic p and let X be a connected
scheme isomorphic to the perfection of a finite-type k-scheme. Then the following are
equivalent.

(1) X is ϕ-rational in the sense of Definition 2.19.
(2) The shifted constant sheaf Fp[dimX] is a simple perverse sheaf.

Proof. First suppose that X is ϕ-rational. Then Fp[dimX] is perverse by Theorem 2.17.
Furthermore, X is irreducible by Lemma 2.21 and [DMP23, Theorem 3.1]. Let U ⊂ X
be a nonempty open subscheme isomorphic to the perfection of a smooth finite-type
k-scheme, which exists by [Sta23, Tag 056V]. Let i : X \ U → X be a complementary
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closed immersion. Then Fp[dimX]U is perverse and simple on U by Lemma 2.24, so it
suffices to show the intermediate extension to X is Fp[dimX]. Clearly i∗Fp[dimX] ∈
pD≤−1(X \ U,Fp), and it remains to verify that Ri!Fp[dimX] ∈ pD≥1(X \ U,Fp). Let
(R,m) be a strict henselization of the local ring at a point in X \ U . By Lemma 2.21
the hypothesis of Lemma 2.23 are satisfied, and in particular R is a domain. We must
therefore verify that RiΓ{m}(Fp) = 0 for i ≤ dimR, where Fp is viewed as an étale sheaf
on Spec(R). When i < dimR this vanishing follows from perversity, and furthermore
H i

m(R) = 0 by Cohen–Macaulayness. The case i = dimR then follows from Proposition
2.23, by applying RΓ{m} the Artin–Schreier sequence (2.2).

For the other direction, let j : U → X be an irreducible open subscheme isomorphic to
the perfection of a smooth finite-type k-scheme. By simplicity we must have Fp[dimX] ∼=
j!∗(Fp[dimX]U ). On the other hand, j!∗(Fp[dimX]) is supported on the closure of U ,
so X is irreducible. We now show by descending induction on dim {x} that the local
ring at x ∈ X is ϕ-rational. If x ∈ U this follows since regular local rings ϕ-rational
even before passing to the perfection [HH89, Theorem 2.1 a)]. If x ∈ X \ U we may
assume the punctured spectrum of the local ring at x is ϕ-rational, so the same is true
of the strict henselization (R,m) by Lemma 2.22. Since X is irreducible, the condition
j!∗(Fp[dimX]U ) = Fp[dimX] implies that RiΓ{m}(Fp) = 0 for i ≤ dimR, where Fp is
viewed as an étale sheaf on Spec(R). Perversity of Fp[dimX] implies that H i

m(R) = 0
for i < dimR (Theorem 2.17 and Lemma 2.16). Then by the Artin–Schreier sequence
(2.2), HdimR

m (R) has trivial ϕ-invariants. The remaining hypotheses of Proposition 2.23,
equidimensionality in particular, are satisfied forR by Lemma 2.15. Thus, R is ϕ-rational,
and hence so is the local ring at x Lemma 2.21. �

A priori, the fact that the irreducibility of a scheme is not an étale-local property
could prevent the simplicity of Fp[dimX] from being an étale-local property. However,
the relation with ϕ-nilpotence shows that this is not the case.

Corollary 2.26. Let k be a perfect field of characteristic p and let X0 be a finite-type
k-scheme. If shifted constant sheaf Fp[dimX0] is a simple perverse sheaf, then X0 is
geometrically unibranch.

Proof. By Theorem 2.25 and Lemma 2.21, the local rings of X0 are ϕ-nilpotent, so the
result follows from [DMP23, Theorem 3.1, Remark 3.2]. �

Remark 2.27. Let X be a normal irreducible scheme of finite type over a perfect field
k. Two important theorems in commutative algebra assert that the absolute integral
closure X+ of X in its field of fractions is Cohen–Macaulay (due to Hochster–Huneke
[HH92]) and ϕ-rational (due to Smith [Smi94]) in an appropriate sense. This is true
more generally over a ϕ-finite base. As observed in [BBL+23, §5.6], these theorems
can be recovered from results such as Theorem 2.25. Informally, the idea is to show
that Fp[dimX]X+ is a simple perverse sheaf on X+. To prove this, one must compute
i∗Fp[dimX]X+ and Ri!Fp[dimX]X+ , where i : Z → X+ is a proper closed subscheme.
But the ∗-pullback is constant, and the !-pullback vanishes since Fp[dimX]X+ is the
∗-extension of its restriction to any open subset [Bha20, Proposition 3.10]. We refer to
[BBL+23, §5.6] for more details.
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3. Global +-regularity and inversion of adjunction

In this section, we review some of the material from [BMP+23] on globally +-regular
varieties, explain the proof of their criterion for inversion of adjunction, and adapt it to
a certain asymptotic analogue. This is going to be applied later to certain Demazure
varieties.

Remark 3.1. In positive characteristic, ideas such as these have been known for at
least a decade in advance. For instance, Das [Das15] proved inversion of adjunction for
strong ϕ-regularity in characteristic p, but we would rather avoid his treatment, because
it circumvents the Kawamata–Viehweg +-vanishing of [Bha12] and because it forces us
to work with Z(p)-divisors everywhere instead of Q-divisors.

3.1. Global +-regularity. Let k be a perfect field and X be a finite type connected
normal k-scheme. It is helpful to consider the notion of boundary and subboundary
Q-divisors, as they constitute a very flexible tool in studying singularities.

Definition 3.2. Let ∆ =
∑

i riDi be a Q-divisor on X, i.e., a finite rational linear
combination of prime divisors on X. We say that ∆ is a boundary (resp. a subbound-
ary) if 0 ≤ ri ≤ 1 for all i (resp. if 0 ≤ ri < 1). We refer to (X,∆) as a boundary
(resp. subboundary) pair.

Let us recall the notion of global +-regularity following [BMP+23, Definition 6.1].

Definition 3.3. We say that the pair (X,∆) is globally +-regular if for every finite cover
f : Y → X with Y connected normal, the natural map OX → f∗OY (bf∗∆c) splits in the
category of OX -modules.

If ∆ = 0, then we simply say that X is globally +-regular. Note that this condition
only has to be verified for a cofinal family of finite covers f . By the cyclic covering trick,
we may even assume that f∗∆ is integral, compare with [BMP+23, Remark 6.2]. Let us
start with the first basic stability property.

Lemma 3.4. If the boundary pair (X,∆) is globally +-regular, the same holds true for
(X,∆′) for any boundary ∆′ ≤ ∆.

Proof. Compose the inclusion f∗OY (bf∗∆′c) → f∗OY (bf∗∆c) with the given section of
OX → f∗OY (bf∗∆c). �

In particular, (X,∆) being globally +-regular implies that (X, ε∆) also is for every
0 ≤ ε ≤ 1. More importantly, global +-regularity satisfies proper descent:

Proposition 3.5. Let f : X → Y be a proper birational map of normal connected k-
schemes of finite type. If (X,∆) is globally +-regular, then so is (Y, f∗∆).

Proof. This is [BMP+23, Proposition 6.19]. Note that pushforwards and pullbacks
of Q-divisors along alterations of normal connected finite type are defined locally in
codimension 1 on principal divisors via the norm map and the inclusion map, respec-
tively, see [Sta23, Tag 02RS], and then extended by normality to the entire space. Let
g : Z → Y be a finite cover by a normal integral k-scheme such that g∗f∗∆ is an inte-
gral divisor. Let W be the normalization of X ×Y Z with base maps g′ : W → X and
f ′ : W → Z. Then, we know that OX → g′∗OW (g′∗∆) splits in OX -modules. The same



18 R. CASS AND J. LOURENÇO

holds therefore for OY → g∗OZ(f ′∗g
′∗∆) in OY -modules, because there is a natural map

g∗OZ(f ′∗g
′∗∆) → f ′∗g

′
∗OW (g′∗∆). Noticing that g∗f∗∆ = f ′∗g

′∗∆, we deduce our desired
splitting. �

Next, we translate the notion of globally +-regularity in terms of trace maps by ap-
plying Grothendieck–Serre duality. Recall that there is a 6-functor formalism on the
category of quasi-coherent sheaves and the canonical sheaves ωX arise as the H−dim(X)

of the complex Rp!k, where p : X → Spec(k) denotes the structure morphism. Since we
assume X to be normal and connected, it turns out that ωX is a reflexive sheaf and we
usually fix an arbitrary canonical divisor KX such that ωX ' OX(KX).

Proposition 3.6. Assume KX + ∆ is Q-Cartier. Then, the boundary pair (X,∆) is
globally +-regular if and only if the trace map

H0(Y,OY (KY − bf∗(KX + ∆)c))→ H0(X,OX) (3.1)

is surjective for all connected normal finite covers f : Y → X.

Proof. This is a particular case of [BMP+23, Proposition 6.8]. By duality, the natural
map OX → f∗OY (bf∗∆c) of OX -modules is a split injection if and only if the map

HomOX (f∗OY (bf∗∆c),OX)→ OX (3.2)

of OX -modules is a split surjection. By Grothendieck–Serre duality, the left side identi-
fies with f∗HomOY (OY (bf∗∆c), f !OX) where f ! is the abelian truncation of the shriek
pullback Rf !. Note that this is reflexive, so to compute it we are allowed to restrict to the
smooth locus of Y . Over there, bf∗∆c becomes an actual Cartier divisor, so, in particu-
lar, we can write the left side as f∗f !OX(−bf∗∆c) by pulling the divisor across the Hom.
On the other hand, by definition of the canonical divisor, we have f !OX(KX) = OY (KY ),
and since we are over the smooth locus of Y , we get the identity f !OX = OY (KY −KX)
and our sheaf identifies with f∗OY (KY − bf∗(KX + ∆)c), just like in the statement of
the proposition. Now, since OX is free, the surjectivity of the trace map can be tested
at the level of global sections. �

Motivated by the previous proposition, one has the k-module of +-stable sections
B0(X,∆;OX) in [BMP+23, Definition 4.2] given by the intersection across all normal
finite covers f : Y → X of the images of the trace maps (3.1) appearing in the statement
of Proposition 3.6. In particular, global +-regularity amounts to demanding an equality
B0(X,∆,OX) = H0(X,OX). We finish this subsection with the following quite non-
standard notion

Definition 3.7. We say that a boundary pair (X,∆) is Q-Fano if the Q-divisor KX + ∆
is Q-Cartier and anti-ample.

Eventually, we will want to provide an inductive criterion for lifting global +-regularity
along closed subschemes and this positivity condition will play a significant role.

3.2. Pure variant and inversion of adjunction. Our next topic consists of a variant
of global +-regularity defined along a prime divisor S ⊂ X. The following notion is a
simplification of [BMP+23, Definition 6.24]. Let (X,∆) be a pair consisting of a finite
type k-scheme and an effective Q-divisor ∆ on X. Assume ∆ = S+B where S is a prime
divisor and B an effective Q-divisor on X with irreducible components different from S.
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Definition 3.8. We say that (X,S+B) is purely globally +-regular along S if the map
of OX -modules OX → f∗OY (−SY + bf∗(S+B)c) splits for every finite cover f : Y → X
with Y connected normal, where the SY ⊂ Y form a compatible family of prime divisors
lying over S ⊂ X.

Using the Galois action on X+ over X, we can show that the previous definition
is independent of the choice of the prime divisors SY ⊂ Y (equivalently, of an absolute
integral closure S+ ⊂ X+). There is a close relationship between pure global +-regularity
and global +-regularity after slightly tweaking the divisors.

Lemma 3.9. If (X,S +B) is purely globally +-regular along S, then (X, (1− ε)S +B)
is globally +-regular for every rational number 0 < ε ≤ 1.

Proof. This is [BMP+23, Lemma 4.26]. We just have to notice that f∗(εS + B) ≤
−SY +f∗(S+B) for sufficiently large normal finite covers f : Y → X, so that the pure +-
splitting of (X,S+B) along S factors over a +-splitting for the pair (X, (1−ε)S+B). �

Proposition 3.10. The pair (X,S +B) is purely globally +-regular along S if and only
if the trace map

H0(Y,OY (KY + SY − bf∗(KX + S +B)c))→ H0(X,OX) (3.3)

is surjective for all normal finite covers f : Y → X.

Proof. The proof is the same as the non-pure along S case, requiring us to check that
the OX -module dual of f∗OY (−SY + bf∗(S + B)c) equals f∗OY (KY + SY − bf∗(KX +
S +B)c). �

Again, there exists a module B0
S(X,S + B;OX) of pure +-stable sections along S,

see [BMP+23, Definition 4.21], and pure global +-regularity along S translates into
an equality B0

S(X,S + B;OX) = H0(X,OX). The pure along S variant of global +-
regularity was setup in this way, precisely because we want to study how to lift global
+-regularity from a prime divisor S to the whole k-variety X – this is known as inversion
of adjunction.

Theorem 3.11 ([BMP+23]). Let X be a connected normal proper k-scheme, S ⊂ X
a normal prime divisor, and B a subboundary with components different from S. If
(X,S + B) is Q-Fano, then (X,S + B) is purely globally +-regular along S if and only
if (S,B|S) is globally +-regular.

Proof. This is a particular case of [BMP+23, Theorem 7.2], see also [BMP+23, Corollary
7.5], and we give a sketch of the argument. During the proof, we use the shorthand
∆ = S +B. By Serre duality, we can identify the trace maps with the natural maps

Hd(X,OX(KX))→ Hd(Y,OY (bf∗(KX + ∆)c)) (3.4)

induced by pullback along f∗ and multiplication by the divisor bf∗∆c, and similarly

Hd(X,OX(KX))→ Hd(Y,OY (−SY + bf∗(KX + ∆)c)) (3.5)

in the pure along S case. Note that OX(KX+S) pulls back to OS(KS) because this holds
away from codimension 2, and then we apply Hartogs’ theorem by normality of S and
X. In particular, the associated long exact sequence yields a connecting homomorphism

Hd−1(S,OS(KS))→ Hd(X,OX(KX)) (3.6)
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which is surjective by normality and connectedness: indeed, it arises by dualising on k-
modules the non-zero ring map H0(X,OX)→ H0(S,OS) between finite field extensions
of k. Similarly, we can connect the right sides of the pullback maps via the following
map

Hd−1(S+,O+
S (ν∗S(KS +B|S)))→ Hd(X+,O+

X(−S+ + ν∗X(KX + ∆))) (3.7)

where we let the +-notation denote the colimit with respect to a family of connected
normal finite covers f : Y → X, and ν is the structure map of the absolute integral
closures. The kernel of the connecting homomorphism at the +-level is given by the
image of Hd−1(X+,O+

X(ν∗X(KX + ∆))). The latter vanishes by anti-ampleness of the
Q-Cartier divisor KX + ∆ and the Kodaira +-vanishing theorem of [Bha12]. A diagram
chase reveals that injectivity for S gives rise to injectivity for X, and vice-versa. �

3.3. An assymptotic variant. Theorem 3.11 provides a criterion for inversion of ad-
junction of global +-regularity but has the somewhat unpleasant feature that it lifts
global +-regularity to at most pure global +-regularity. At the same time, the latter
comes pretty close to global +-regularity itself by Lemma 3.9. This leads us to formu-
late a variant that treats boundary pairs asymptotically and increases the clarity of our
exposition when applying the criterion to Demazure varieties.

Definition 3.12. Given a boundary decomposition ∆ = S+B with S prime and B ≥ 0
with no common components with S, we similarly say that the boundary pair (X,∆)
is asymptotically purely Q-Fano along S if there exist arbitrarily close subboundaries
B′ < B such that KX + S +B′ is an anti-ample Cartier divisor.

The definition above is again quite non-standard, but it fits well within our paper.
The next step is to define the asymptotic analogue of global +-regularity.

Definition 3.13. We say that the boundary pair (X,∆) is asymptotically globally +-
regular if for all subboundaries ∆′ < ∆, the pair (X,∆′) is globally +-regular in the
usual sense.

Note that we do not here the condition applies to all smaller subboundaries, because
global +-regularity is stable under parallelipepides, unlike ampleness. We can safely ig-
nore a corresponding asymptotic notion of pure global +-regularity along a prime divisor,
as the criterion for inversion of adjunction now takes the following form.

Corollary 3.14. Let X be a connected normal proper k-scheme, S ⊂ X a normal prime
divisor, and B a boundary with components different from S. If (X,S + B) is asymp-
totically purely Q-Fano along S and (S,B|S) is asymptotically globally +-regular, then
(X,S +B) is asymptotically globally +-regular.

Proof. Let B′ < B be a subboundary such that the corresponding pair (X,∆′) with
∆′ = S + B′ is Fano. Now, since we know that (S,B′|S) is globally +-regular, we may
apply Theorem 3.11 to get that (X,∆′) is purely globally +-regular along S. But then
(X, (1− ε)S +B′) is actually globally +-regular for any ε > 0. Letting ε go to 0 and B′
to B, we get arbitrarily close to the original boundary ∆, so it induces a asymptotically
globally +-regular pair. �
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Remark 3.15. There is a corresponding version of the corollary which is an equivalence
between the behavior of the pairs (X,∆) and (S,B|S), but it requires defining asymptotic
pure global +-regularity along a divisor. The only thing happening here is that the
asymptotic pure version for (X,∆) implies the asymptotic non-pure one for the same
pair without tampering with the divisor, precisely because of the asymptoticity.

4. Affine flag varieties

4.1. Affine Schubert varieties. Throughout this section k denotes an algebraically
closed field of characteristic p > 0. Let F be a complete discretely valued field with
ring of integers O and residue field k. Fix a connected reductive group G over F and
a parahoric O-model G in the sense of Bruhat–Tits [BT84]. We introduce the affine
Schubert schemes following [AGLR22, §3.2], with some simplifications since we assume
k is algebraically closed.

Let Algperf
k denote the category of perfect k-algebras. For R ∈ Algperf

k let W (R) be
the ring of p-typical Witt vectors over R. The ring of O-Witt vectors over R is defined
as

WO(R) =

{
W (R)⊗W (k) O, char(F ) = 0

R ⊗̂k O, char(F ) = p.

Note that if char(F ) = p and t ∈ O is a uniformizer, then O ∼= k[[t]] and WO(R) ∼= R[[t]].
We define the following two functors Algperf

k → Grp,

LG(R) = G(WO(R)⊗O F ), L+G(R) = G(WO(R)).

The affine flag variety for G is the étale quotient

FlG = LG/L+G.

The functor FlG is represented by an increasing union of perfections of projective k-
schemes. Indeed, if char(F ) = p then FlG is the perfection of the affine flag variety in
the sense of [PR08] (which admits a natural moduli problem for all k-algebras), and if
char(F ) = 0 we obtain the affine flag variety in the sense of [Zhu17] whose representability
was proved in [BS17, Corollary 9.6].

The Schubert varieties for the parahoric group scheme G arise as the L+G-orbit closures
inside FlG . As we explain now, these are enumerated via double cosets of the Iwahori–
Weyl group and this combinatorics captures their closure relations. Let f be the unique
facet in the Bruhat–Tits building B(G,F ) whose connected stabilizer is G(O). Let S ⊂ G
be a maximal F -split torus whose apartment contains f . The centralizer T = ZG(S) is
a maximal F -torus and we let T be its connected Néron O-model. The Iwahori–Weyl
group associated to S is W̃ := N(F )/T (O). The choice of an alcove a in the apartment
of S gives rise to a split exact sequence

1→Waf → W̃ → π1(G)I → 1 (4.1)

where π1(G) is the algebraic fundamental group and I is the inertia group of F . The
affine Weyl group Waf is the Coxeter group generated by the reflections in the walls of
a. By declaring elements of π1(G)I to have length zero, W̃ is a quasi-Coxeter group. Let
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WG ⊂ W̃ be the subgroup generated by reflections in the walls of f . Then we have the
Bruhat decomposition

L+G(k)\LG(k)/L+G(k) = WG\W̃/WG (4.2)

describing the k-valued points of the Hecke stack HkG := [L+G\FlG ]. Since these capture
the entirety of the L+G-orbits, we can now give the formal definition of Schubert varieties.

Definition 4.1. Let w ∈ WG\W̃/WG . The affine Schubert variety FlG,≤w ⊂ FlG is the
closure of the G-orbit of any choice of lift of w to FlG(k).

The affine Schubert variety FlG,≤w is isomorphic to the perfection of a projective k-
scheme. The notation FlG,≤w reflects the fact that FlG,≤w is set-theoretically a disjoint
union of the finitely many L+G-orbits for the v ∈ WG\W̃/WG bounded by w in the
Bruhat order ≤. There is a refinement of this collection of closed subschemes obtained as
L+I-orbit closures Fl(I,G),≤w inside FlG , called Iwahori–Schubert varieties and indexed
by any w ∈ W̃/WG .

We will also need convolution Schubert varieties, in order to have access to Demazure
resolutions. Let w• = (w1, . . . , wn) be a sequence of elements in W̃ . We define the
convoluted Schubert variety

FlG,≤w• := (LG)≤w1 ×L
+G · · · ×L+G FlG,≤wn , (4.3)

where (LG)≤w ⊂ LG is the pullback of the Schubert variety FlG,≤w ⊂ FlG along the
natural projection LG→ FlG and the notation ×L+G stands for the étale quotient by the
diagonal L+G-action on the adjacent factors. If G = I is a Iwahori and all the wi =: si
have length 1, then (LG)≤si identifies with the jet group L+Gsi of the unique parahoric
O-model of G such that Gsi(O) stabilizes the codimension 1 subfacet fi ⊂ ā fixed under
si. Thus, we can write

FlI,≤s• = L+Gs1 ×L
+I · · · ×L+I L+Gsn/L+I. (4.4)

and call this a Demazure variety. This is a perfectly smooth variety of dimension n and
any convolution Schubert variety admits a proper birational cover given by a Demazure
variety under the natural multiplication map. It is costumary to demand that the si are
simple reflections in Waff , but this forces one to explicitly deal with translations.

Let us compute the Picard group at Iwahori level.
Proposition 4.2. Suppose G = I is an Iwahori model. Then there is an isomorphism
deg : Pic(FlI,≤w•)

∼−→
∏
i,s≤wi Z[1/p]n given by the degree of the restriction to FlI,≤s,

where s runs through length 1 words s bounded by wi for each i.

Proof. See [FHLR22, Lemma 4.8] when F has characteristic p and [AGLR22, Theorem
3.8] when F has characteristic 0. While the degree isomorphism Pic(P1,pf

k ) ' Z[1/p]
implicitly uses the choice of a deperfection, there is no ambiguity when it comes to
FlI,≤s, as we can take the natural smooth deperfection FlI,≤s,1 that comes with a Ik-
action and smooth stabilizers, see [AGLR22, Definition 3.14] and the next section on
Demazure deperfections. �

In order to apply our criterion on inversion of adjunction for asymptotic global +-
regularity, we shall need to have strong control over positivity of line bundles on Demazure
varieties.
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Lemma 4.3. Suppose G = I is an Iwahori model. Then, a line bundle L on Pic(FlI,≤w•)
is ample (resp. semi-ample) if and only if deg(L) is a sequence of positive (resp. non-
negative) rationals and the subsequence indexed by any s is strictly decreasing (resp. de-
creasing).

Proof. This essentially follows from [HZ20, Theorem 3.1], but we give a self-contained
proof. For the forward direction, notice that ampleness (resp. semi-ampleness) is pre-
served under pull-back along a closed immersion (resp. an arbitrary map). By restricting
to FlI,≤s, it follows that deg(L) consists of positive (resp. non-negative) rationals if L is
ample (resp. semi-ample). In order to obtain the monotonicity condition, we restrict L
to the convolution FlI,≤(s,s), and identify it with the usual product Fl2I,≤s via the first
projection and multiplication. Observe that this isomorphism maps FlI,≤(s,1) ⊂ FlI,≤(s,s)

(resp. FlI,≤(1,s) ⊂ FlI,≤(s,s)) to the diagonal (resp. second factor) of the untwisted prod-
uct Fl2I,≤s, so the claim is clear.

For the converse, we can reduce to the case where w• = w by considering the natural
embedding FlI,≤w• ⊂ FlnI whose i-th coordinate is the projection FlI,≤w• → FlI,≤w•≤i
post-composed with the multiplication FlI,≤w•≤i → FlI . Indeed, we can extend L to the
right side preserving the positivity condition on degrees. We may also pass to the adjoint
quotient of G and then to each of its simple F -factors, and hence assume that G is an
almost simple F -group. Now, we consider the closed embedding FlI →

∏
s FlGs , where s

runs through all simple reflections and Gs is the unique maximal parahoric O-model such
that I(O) ⊂ Gs(O) but s /∈ Gs(O). Since Pic(FlGs) = Z[1/p], positivity equals ampleness
for these partial flag varieties and the result is clear by pullback. �

4.2. Central extension. In this section, we discuss a special central extension of the
loop group building on [FHLR22, §4.1.3]. This relates to equivariance of line bundles
on FlI with respect to the loop group LG. We assume from now on that G is simply
connected and almost simple. One can show by reduction to maximal parahorics Gs
as in the previous lemma and then to GLn and its determinant line bundle, see [BS17,
Theorem 8.8], that every line bundle in Pic(FlI) is LG(k)-equivariant. However, it is not
true that LG(k)-equivariance implies LG-equivariance. Indeed, we have

Pic([LG\FlI ]) ' Pic([∗/L+I]) ' X∗(S) (4.5)

and we can describe the map towards Pic(FlI) as follows, see also [FHLR22, Lemma
4.10]. Let ν ∈ X∗(S) and denote by O(ν) the associated line bundle. Given a simple
reflection s ∈ Waf with associated affine root αs, we can check that the degree of L(ν)
over FlI,≤s equals 〈a∨s , ν〉, where a is the euclidean root underlying αs, compare with
[FHLR22, Lemma 4.12]. The map X∗(S) → Pic(FlI) is a split injection, but cannot
possibly be surjective, as the image has rank equal to that of W (the euclidean rank of
G), whereas Pic(FlI) has rank equal to that of Waf (the affine rank of G). The cokernel
of X∗(S) → Pic(FlI) is a free Z[1/p]-module of rank 1, again by the same proof as in
[FHLR22, Lemma 4.12]. Employing the same ordering as in [FHLR22, Lemma 4.13] after
decomposing G into simple factors, we can select a certain semi-ample line bundle L to
define a direct summand Z[1/p] inside Pic(FlI) complementary to X∗(S). This leads to
the central charge map

c : Pic(FlI)→ Z[1/p] (4.6)
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with kernel equal to X∗(S). We define the central extension

1→ Gpf
m,k → L̂G→ LG→ 1 (4.7)

that classifies isomorphisms between L and g∗L for all the i. This is independent of the
choice of L by the proof of [FHLR22, Lemma 4.27]. Observe now that we have

Pic([L̂G\FlI ]) ' Pic([∗/L̂+I]) ' X∗(Ŝ) (4.8)

and the forgetful map X∗(Ŝ)→ Pic(FlI) is an isomorphism by construction. Therefore,
every line bundle on FlI has become L̂G-equivariant. Using this, we can define affine
coroots.

Definition 4.4. Let s be a simple reflection and Gs be the associated parahoric group
scheme. The affine coroot α∨s ∈ X∗(Ŝ) is defined as the unique lift of a∨s ∈ X∗(S) such
that the associated map Gpf

m,k → L̂G lands in the subgroup generated by L+U±αs .

In the definition, we are using the fact that the pullback of LUa ⊂ LG along the central
extension splits canonically, which is a consequence of the group Ua being unipotent. The
dual weight ωs corresponds under our isomorphism to the line bundle Ls with degree 1

on FlI,≤s and 0 on every other L+I-stable P1,pf
k . The sum of the dual weights ρ =

∑
s ωs

corresponds to the critical line bundle with degree 1 on every L+I-stable P1,pf
k , compare

with the terminology in [FHLR22, Lemma 4.17].

Remark 4.5. It is slightly confusing that there are central weights of L̂G giving rise
to non-trivial line bundles by Iwahori induction, but the difference for this very large
ind-group is that the center and the cocenter are not isogenous. Indeed, one checks that
L̂G is equal to its own derived subgroup. If there were a rotation Gm-action on LG
(e.g., in equicharacteristic and for tame G), we could produce affine roots and their dual
coweights as well. In general, however, there does not seem to be a loop interpretation
for the affine roots for p-adic G.

4.3. Equivariant q•-twisted deperfections. If F has characteristic p, then the moduli
space that the perfect flag variety FlG underlies extends naturally to arbitrary k-algebras
and is represented by an ind-scheme. As in the perfect case, one defines Schubert varieties
as L+G-orbit closures, where now L+G is also functor on arbitrary k-algebras. However,
since these can fail to be normal in certain cases by [HLR24], one is led to consider their
seminormalizations in [FHLR22]. Similarly, one can form convolution products via the
moduli interpretation of FlG and we set FlG,≤w• for the seminormalization (which is again
normal).

If F has characteristic 0, then a finite type deperfection Flcan
G,≤w was proposed in

[AGLR22, Definition 3.14], but it is not clear how well behaved it is beyond low di-
mensional cases. For us, it is actually preferable to deperfect Demazure varieties. Re-
call that the loop group L+G associated with a parahoric model admits a deperfection
ResO/kG given by the Greenberg realization. Let s• = (s1, . . . , sn) be a not necessarily
reduced sequence of simple reflections in the Iwahori–Weyl group. Then, we get a stacky
deperfection of FlI,≤s• as follows:

FlstkI,≤s• := ResO/kGs1 ×ResO/kI × · · · ×ResO/kI ResO/kGsn/ResO/kI (4.9)
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where Gsi is the unique parahoric model such that Gsi(O) = I(O) ∪ I(O)siI(O). This
is never a scheme because the maps ResO/kI → ResO/kGsi are never injective due to
p-torsion in the Witt rings of imperfect rings. Getting actual schemes requires twisting
by the Frobenius ϕ as follows.

We define a certain k-smooth deperfection FlI,≤s•,q• by induction on the length of the
sequence s•. Here, q• is going to be an increasing sequence of powers of p defined also
in an inductive manner, which we call s•-permissible. Suppose we have constructed the
k-smooth variety FlI,≤t•,r• , where s• = (s1, t•) and r• is t•-permissible. Suppose that the
congruence subgroup L+I ∩ L≥nGs1 acts trivially on the perfect scheme FlI,≤t• . Then,
the smooth k-group ResOn/k(I,Gs1) := im(ResOn/kI → ResOn/kGs1) necessarily acts on
(FlI,≤t•,r•)

q for some sufficiently large power q of p. By rescaling r• with this same power
of q, we may assume that there was an action from the start. We then define

FlI,≤s•,q• := ResOn/kGs1 ×
ResOn/k(I,Gs1 ) FlI,≤t•,r• (4.10)

with q• := (1, r•). This is a smooth k-scheme by induction and the fact that ResOn/kGs1 →
FlI,≤s1 has Zariski local sections.

Definition 4.6. For any s•-permissible sequence, we define the equivariant q•-twisted
deperfection of FlI,≤s• as the smooth k-variety FlI,≤s•,q• constructed above by induction.

Technically, we are abusing notation by not including the corresponding sequence of
integers n• used to truncate the deperfected jets, as enlarging n• could force q• to become
large for the twisted product to be well-defined. However, FlI,≤s•,q• is still independent
of n• in the following sense: if q• works for both n• and m•, then the resulting smooth
deperfections are isomorphic.

Next, we compute the canonical sheaf of the deperfection FlI,≤s•,q• . Note that this
variety carries a natural effective divisor ∂s•,q• regarded as its boundary, and given by
the sum of all the prime divisors FlI,≤s•\i,q•\i for all 1 ≤ i ≤ n.
Proposition 4.7. There is an isomorphism

ω−1
s•,q• ' O(∂s•,q•)⊗O O(q•) (4.11)

of line bundles on FlI,≤s•,q• .

Proof. Regard a subsequence of s• as a smaller word t• ≤ s• by inserting the identity
when needed. Then q• is still t•-permissible and we get closed immersions FlI,t•,q• .
Our goal is to calculate the degree of ωs•,q•(∂s•,q•) when restricted to FlI,≤si for every
1 ≤ i ≤ n: namely, that it equals −qi. By the adjunction formula for canonical divisors
along regular immersions, we see that this quantity remains stable under restriction from
s• to any t• with ti = si. By induction we can hence assume that s• has been truncated
to one letter, in which case the result is clear. Indeed, identifying FlI,≤si,qi with P1

k, this
reduces to the usual calculation of the cotangent sheaf, but we need to remember that
our definition of degrees in the perfection P1,pf

k was twisted by qi. �

4.4. Global +-regularity. In equicharacteristic, it is known that FlG,≤w are perfec-
tions of globally ϕ-regular k-varieties by [Cas22, Theorem 1.4] for split G and [FHLR22,
Theorem 4.1] for general G. In particular, these deperfections are also globally +-regular
by [BMP+23, Lemma 6.14]. We want to prove a version of this in mixed characteristic,
except it is not always true.
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Theorem 4.8. If q• = 1 is s•-permissible, then (FlI,≤s•,1, ∂s•,1) is asymptotically globally
+-regular.

Proof. Let s• = (s1, . . . , sn) be a word of simple reflections, not necessarily reduced, and
set X = FlI,≤s•,1, ∂X = ∂s•,1. Consider the effective Cartier divisors Di := FlI,≤s•6=i,1 ⊂
FlI,≤s•,1 for any 1 ≤ i ≤ n obtained by deleting the letter i. We know that the Cartier
divisor KX +∂X has degree −1 in every L+I-stable curve, so its negative is semi-ample.
Since we have (∂X − S)|S = ∂S, our goal is to show that (X, ∂X) is asymptotically
purely Fano along S := Dn, so that we may apply Theorem 3.11. Thus, we have to
slightly perturb the coefficients of ∂X =

∑
i≤nDi to get a Q-divisor

∆ =
∑
i≤n

riDi (4.12)

with ri smaller but arbitrarily close to 1 and rn = 1 so that KX + ∆ is Q-Cartier (trivial
as X is smooth) and anti-ample. For convenience, we set εi := 1−ri and E := −KX−∂X
as shorthand for the everywhere degree 1 Cartier divisor. Then, we deduce that

−KX −∆ = E +
∑
i

εiDi (4.13)

and it is enough that the associated degrees sequence is decreasing. In a lemma below, we
construct a sequence εi stable under homothety such that the right side has decreasing
degrees. Thus, we get the required asymptotical pure Fano property. �

We used the following lemma during the previous proof.

Lemma 4.9. There exists a sequence of rational numbers 1 > ε1 > · · · > εn = 0 such
that the effective Q-divisor cA+E is ample on X for every c ∈ Q>0, where A :=

∑
i εiDi

and deg(E) = (1, . . . , 1).

Proof. We are going to construct instead a strictly decreasing sequence of positive integers
ai such that B :=

∑
i aiDi has strictly decreasing non-negative degrees on the FlI,≤sk .

Then, we set εi = N−1ai where N > ai for all i.
By induction on the length of our sequence s•, we can assume that we already have

a2, . . . , an satisfying our degree hypothesis for s•>1. Choose now a sufficiently large
positive integer a1. Since D1 has trivial degree on FlI,≤sk for k > 1, we see that the
divisor A has strictly decreasing non-negative degrees on the FlI,≤sk for k > 1. On the
other hand, D1 has degree 1 on FlI,≤s1 , so the corresponding degree of A grows linearly
with a1. Thus, we may assume that it supersedes those for k > 1. �

It is conjectured that global +-regularity is an equivalent notion to strong ϕ-regularity,
but it is not currently known. In our situation, we can still deduce strong ϕ-regularity
from our results.

Corollary 4.10. If q• = 1 is s•-permissible, then FlI,≤s•,1 is globally ϕ-regular and
compatibly ϕ-split with FlI,≤t•,1 for every t• ≤ s•.

Proof. Take ∆s•,1 = (1− 1/p)FlI,≤s•\i,1. Then global +-regularity implies that the map
of coherent sheaves

OI,≤s•,1 → ϕ∗OI,≤s•\i,1/p((p− 1)FlI,≤s•\i,1/p) (4.14)
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admits a splitting. Twisting it by the ideal sheaf of FlI,≤s•\i,1 and applying the projection
formula, we deduce that FlI,≤s•,1 is compatibly ϕ-split with each irreducible component
of its boundary, compare with [BK05, Theorem 1.4.10]. This proves by induction that it
is compatibly ϕ-split with any intersection and unions of those.

Next, we handle global ϕ-regularity. We select an ample effective Q-divisor

∆s•,1 :=
∑
i

ni
q

FlI,≤s•\i,1 (4.15)

for some sequence of non-negative integers 0 ≤ ni < q and some sufficiently large q =
pe � 0. This is possible by the argument in the previous lemma for example. Then, we
can guarantee the existence of a splitting

OI,≤s•,1 → ϕe∗OI,≤s•,1/q(
∑
i

niFlI,≤s•\i,1/q) (4.16)

by global +-regularity. Now we can apply [Smi00, Theorem 3.10] to deduce that FlI,≤s•,1
is globally ϕ-regular. �

Now, we assume that s• is reduced. Let FlG,≤w be the image of the map FlI,≤s• → FlG .
Then, we can define FlG,≤w,q• as the normal k-variety modelling the original Schu-
bert variety whose structure sheaf equals the pushforward of OI,≤s•,q• along the map
FlI,≤s• → FlG,≤w of perfect varieties (regarded as a topological map). In the q• = 1 case,
we can say a lot about the geometry of these schemes:

Proposition 4.11. If q• = 1 is s•-permissible, then FlG,≤w,1 is globally ϕ-regular and the
maps FlG,≤v,1 → FlG,≤w,1 are compatibly ϕ-split closed immersions for v ≤ w. Moreover,
FlI,≤s•,1 → FlG,≤w,1 is a rational resolution.

Proof. Global ϕ-regularity is preserved along proper birational maps, so the first claim
follows. For the second claim, it is crucial to show that the induced map OG,≤w,1 →
OG,≤v,1 is surjective. This is equivalent to showing that the ideal sheaf of FlI,≤s•\i,1 has
vanishing higher direct images along the Demazure resolution. This is true by construc-
tion at the perfect level and we can therefore descend it to our deperfection by using
a ϕ-splitting of FlI,≤s•,1 compatible with its boundary. As for rationality of the deper-
fected Demazure resolution, we can prove it in the same manner: we know that the higher
direct images of the structure sheaf vanish at the perfect level and then it descends via
a ϕ-splitting, compare with the discussion around [BS17, Lemma 6.9]. For the canonical
sheaf, we know that pushforward respects dualizing complexes by Grothendieck–Serre
duality and the preceding higher vanishing of the structure sheaf. Then, it suffices to
observe that FlG,≤w,1 is globally +-regular, hence Cohen–Macaulay. �

We can also compute the Picard group of FlG,≤w,1 as follows:

Corollary 4.12. If q• = 1 is s•-permissible, then the natural map Pic(FlG,≤w,1) →∏
s≤w Pic(FlG,≤s,1) is an isomorphism.

Proof. Due to rationality and compatible ϕ-splitness of the FlG,≤v,1, we can now write
the deperfected Demazure resolution FlI,≤s•,1 → FlG,≤w,1 as a composition of rational
maps with non-trivial fibers equal to P1

k, just like in [FHLR22, Lemma 4.5]. Then, one
shows also inductively that the line bundle O(ν) on FlI,≤s•,1 for some integral weight
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ν of the torus Ŝ pushes forward along the resolution to a line bundle on FlG,≤w,1, see
[FHLR22, Lemma 4.20]. �

Remark 4.13. A consequence of this result is that we could now reprove global ϕ-
regularity of FlI,≤s•,1 via the Mehta–Ramanathan criterion. Indeed, every ample line
bundle on FlG,≤w,1 is globally generated, as restriction to the origin is surjective by ϕ-
splitness, and the base locus is I(O)-equivariant. Then, we can define a ϕ-splitting via
the (p−1)-th power of a global section of H0(FlI,≤w,1,O(ρ)) not vanishing at the origin.

Another corollary of global +-regularity is the Demazure character formula. Recall
that the central extension L̂G acts on any line bundle O(ν). In particular, if ν is suffi-
ciently p-divisible, the line bundle O(ν) descends to FlI,≤s•,q• , so the cohomology groups
H i(FlI,≤s•,q• ,O(ν)) have an associated character counting dimensions of affine weight
spaces, i.e., an element of the group ring Z[X∗(Ŝ)] of affine weights. We use exponential
notation for this group ring to avoid confusion with sums of coefficients and sums of
weights (which correspond to multiplication in the ring).

Corollary 4.14. Let ν ∈ X∗(Ŝ)+ be a dominant weight. If q• = 1 is s•-permissible,
then we have an equality

charH0(FlI,≤s•,1,O(ν)) = Λs1 ◦ · · · ◦ Λsn(eν) (4.17)

where Λs(e
ν) = (1− e−as)−1(eν − eν−〈α∨s ,ν+ρ〉as) is the Demazure operator.

Proof. The usual inductive proof identifies the right side with the character of the Euler
characteristic χ(FlI,≤s•,1,O(ν)), compare with [Lit98, Theorem 7]. Global +-regularity
of FlI,≤s•,1 yields vanishing of higher cohomology, so the equality follows. �

4.5. Local models. In this section, we briefly need to refer to the theory of v-sheaves as
in [Sch17, SW20], but the reader may treat this as a black box. Consider the Beilinson–
Drinfeld Grassmannian GrG in the sense of [SW20] defined over the v-sheaf SpdO. Its
generic fiber is isomorphic to the B+

dR-affine Grassmannian and its special fiber equals
the v-sheaf attached to the affine flag variety FlG . Let µ be a geometric conjugacy class
of coweights with reflex field E. Then, the affine Grassmannian GrG,E base changed to
E contains a closed subsheaf GrG,≤µ arising as the L+G-orbit closure of µ(ξ). Following
[AGLR22], we define the v-sheaf local model Mv

G,µ as the v-sheaf closure of GrG,E inside
GrG,OE .

If F has characteristic p or µ is minuscule, there exists by [AGLR22, Theorem 1.1]
and [GL24, Corollary 1.4] a unique flat normal projective OE-scheme MG,µ with reduced
special fiber whose associated v-sheaf equals Mv

G,µ. We call it the scheme-theoretic local
model and, with the single exception of wild odd unitary groups (so only when p = 2),
it was shown in the corresponding statements of [AGLR22, GL24] (relying on [FHLR22,
Theorem 1.2]) that this scheme has ϕ-split special fiber. We can now use our global
+-regularity result to remove this assumption from the computation of the special fiber
in [AGLR22, FHLR22, GL24] (see Remark 4.17 for Cohen–Macaulayness).

Before we state and prove it, we treat the deperfection of the µ-admissible locus
AG,µ. Recall that the µ-admissible set Admµ of Kottwitz–Rapoport [KR00] consists
of all elements w of the Iwahori–Weyl group bounded by the translation tλ for some
representative of µ. Then, the µ-admissible locus AG,µ is the union of all Schubert
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varieties FlG,≤w as w runs over all double cosets with lifts in Admµ (after fixing a Iwahori
O-model I mapping to G). Below, we show strong structure results on the so-called
canonical deperfection of AG,µ in the sense of [AGLR22, Definition 3.14], generalizing
[AGLR22, Theorem 3.16].

Theorem 4.15. Assume F has characteristic p or µ is minuscule. Then, AG,µ has
a unique ϕ-split deperfection AG,µ,1 admitting the deperfections FlG,≤tλ,1 as compatibly
ϕ-split closed subschemes for every representative λ of µ. Moreover, there is an equality

dimkH
0(AG,µ,1,L) = dimEH

0(GrG,≤µ,1,O(cL)) (4.18)

of dimensions of global sections of line bundles, where L is ample and cL is its central
charge.

Here, we have to regard the central charge cL as a tuple of integers obtained by splitting
the adjoint quotient of G into simple factors, then translating connected components of
their flag varieties to the neutral one, and finally taking the central charge for the simply
connected cover.

Proof. Note that tλ has a reduced word for which the constant sequence 1 is permissible
by the proof of [AGLR22, Lemma 3.15], so the statement is reasonable. We write AG,µ as
the finite colimit of its Schubert subvarieties FlG,≤w along the various natural inclusion
maps. Then, we define AG,µ,1 as the analogous colimit of the FlG,≤w,1: existence follows
by writing is as successive pushouts along closed immersions and invoking [Sta23, Tag
0E25]. This is the unique deperfection birational to all the FlG,≤tλ,1, and one checks that
the natural maps are closed immersions.

We still have to construct a ϕ-splitting and we can assume that G = I is a Iwa-
hori. In order to glue the various ϕ-splittings that we have defined on the FlI,≤w,1, we
must characterize them in unequivocal fashion. The ϕ-splitting provided by the Mehta–
Ramanathan criterion depends only on the Demazure resolution and some global section
θ of O((q − 1)ρ) whose divisor div(θ) avoids the origin. It is determined uniquely by
a global section σ of the (q − 1)-th power of the anti-canonical sheaf of FlI,≤w,1. A
calculation away from codimension 2 strata shows that div(σ) = div(θ) + (q− 1)∂w,1. In
other words, once we choose a global section θ of a (q − 1)-th power of the ample line
bundle O(ρ) of AI,µ,1 such that div(θ) avoids the origin, we get compatible ϕ-splittings
of all its subvarieties FlI,≤w,1.

Finally, we need to handle the calculation of the Euler characteristics. A Möbius
inversion formula for posets yields

χ(AG,µ,1,L) =
∑

w<w1<···<wn
(−1)nχ(FlG,≤w,L) (4.19)

where the sum runs through all strict chains of µ-admissible double cosets. Together
with the Demazure character formula and higher vanishing for ample L, we get a purely
combinatorial formula for the left side. We remark that, for triality factors, this appears
trickier because the splitting field can have either degree 3 or 6, but one checks that the
A3-average and the S3-average of an arbitrary coweight coincide. This means that we can
reduce the proof of the equality to tame G in equicharacteristic (or even equicharacteristic
0!), so the result follows from [Zhu14, Theorem 3], see also [GL24, Theorem 2.1] for
another proof. �
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We can deduce from the above an identification of the special fiber of scheme-theoretic
local models.

Corollary 4.16. The special fiber of MG,µ equals AG,µ,1.

Proof. If p > 2 or ΦG is reduced, this is [AGLR22, Theorem 1.1] and [FHLR22, Theorem
1.2]. The previous theorem states that the Hilbert polynomials of AG,µ,1 and GrG,≤µ,1
coincide. By [GL24, Corollary 1.4], the special fiber of MG,µ is reduced with weak nor-
malization equal to AG,µ,1 (essentially by definition). By flatness, the special fiber also
shares the same Hilbert polynomial as GrG,≤µ,1. Since the weak normalization injects on
structure sheaves, the quotient module has trivial Hilbert polynomial, so it necessarily
vanishes, and this yields the claim. �

Remark 4.17. Our methods are not enough to show Cohen–Macaulayness for wild odd
unitary G. Indeed, the argument in [FHLR22] relies on the existence of a Frobenius
ϕ on the entire local model. We should mention that Yang [Yan24] proved Cohen–
Macaulayness for wild odd unitary groups when p = 2 at special parahoric level working
explicitly with lattice chains. In this case, the special fiber is irreducible, so we can
also deduce it from our results by deforming Cohen–Macaulayness. It is plausible that
recent developments in [BMP+24] might lead to an abstract uniform proof of Cohen–
Macaulayness for arbitrary parahorics.
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