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Abstract. We extend the ramified geometric Satake equivalence due to Zhu
(for tamely ramified groups) and the third named author (in full generality)
from rational coefficients to include modular and integral coefficients.
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1. Introduction

1.1. Ramified geometric Satake equivalence. The geometric Satake equiva-
lence, first fully established by Mirković–Vilonen [MV07] after important contri-
butions of Lusztig [Lus83], Ginzburg [Gin00] and Bĕılinson–Drinfeld [BD00], has
now become a cornerstone of geometric approaches to a variety of subjects in rep-
resentation theory and number theory. It consists of an equivalence of monoidal
categories relating the category of perverse sheaves on the affine Grassmannian of a
reductive algebraic group to representations of the Langlands dual reductive group.
This construction has many variants, in which one e.g. changes the coefficients of

P.A. was supported by NSF Grant Nos. DMS-1802241 and DMS-2202012. J.L. was supported
by the Max-Planck-Institut für Mathematik, the Excellence Cluster of the Universität Münster,
and by the ERC Consolidator Grant 770936 via Eva Viehmann. This project has received funding
from the European Research Council (ERC) under the European Union’s Horizon 2020 research
and innovation programme (S.R. & T.R., grant agreement No. 101002592). Also, T.R. acknowl-
edges support by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
TRR 326 Geometry and Arithmetic of Uniformized Structures, project number 444845124 and
the LOEWE professorship in Algebra.

1



2 PRAMOD N. ACHAR, JOÃO LOURENÇO, TIMO RICHARZ, AND SIMON RICHE

Name Input group Coefficients Tannakian side Reference
absolute G split / C comm. ring k Rep(G∨k ) [MV07]
motivic G split / scheme S motives RepG∨ (MTM(S)) [CvdHS23]
tamely ramified G spec. parahoric / F[[t]] Q` Rep((G∨Q`

)I) [Zhu15]
ramified G spec. parahoric / F[[t]] Q` Rep((G∨Q`

)I) [Ric16]
mod. ramified G spec. parahoric / F[[t]] Λ = Q`,Z`,F` Rep((G∨Λ)I) this paper

Table 1. Some variants of the geometric Satake equivalence

the sheaf theory, or the field of definition of the geometric objects. See, for in-
stance, Cass–van den Hove–Scholbach [CvdHS23] and the references cited therein,
as well as Table 1.

The present paper is a contribution to another variant of this story, initially
developed by Zhu [Zhu15], where one replaces the (split) reductive algebraic group
over the base field F (of characteristic p) of which one takes the affine Grassmannian
by a possibly nonsplit reductive group over F((t)) and a parahoric model over F[[t]]
attached to a special facet. For `-adic coefficients with ` 6= p, a version of the
Satake equivalence in this setting was obtained in [Zhu15] assuming the reductive
group splits over a tame extension, and then by the third author [Ric16] in full
generality. Here we extend these constructions to modular and integral coefficients,
i.e. to categories of perverse sheaves with coefficients in a finite field of characteristic
` or the ring of integers of a finite extension of Q` with ` 6= p. (See also Remark 1.3
regarding the analytic setting and Remark 1.4 for an extension to the motivic
setting.)

1.2. Ramified affine Grassmannians. Quite generally, one can associate a pos-
itive loop group L+H and an affine Grassmannian (sometimes called an affine flag
variety) to any smooth affine group scheme H over F[[t]]. (Here F is a separably
closed field; for this part of the discussion it could be an arbitrary field.) Of par-
ticular interest is the case when H is a parahoric integral model of a connected
reductive algebraic group over F((t)) attached to a facet in the associated Bruhat–
Tits building, see in particular Pappas–Rapoport [PR08]. This class is however
too vast to expect a geometric Satake equivalence (e.g. since it contains all partial
affine flag varieties attached to split groups). A geometric study of the cases where
some of the important properties of the affine Grassmannians arising in [MV07]
(in particular, regarding parity of dimensions of orbits) was undertaken in [Ric16];
it turns out that a nice class of cases is that when the facet involved is special.
This case covers the setting considered in [MV07] (corresponding to hyperspecial
facets of split groups), and also those arising in [Zhu15]. More geometric properties
of such twisted affine Grassmannians (in particular, regarding semi-infinite orbits)
were later established in Anschütz–Gleason–Lourenço–Richarz [AGLR22].

For twisted affine Grassmannians, and for `-adic coefficients, the third author
established an equivalence generalizing those of [MV07] and [Zhu15], relating the
category of equivariant perverse sheaves on the affine Grassmannian, equipped with
the convolution monoidal structure, to the category of representations of a certain
algebraic group, described as follows. The reductive group G over F = F((t)) in-
volved in the constructions splits over the separable closure F s of F . One can then
consider the pinned group G∨Q` over Q` which is Langlands dual to this split group.
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Since the dual group arises from a group over F((t)), it is equipped with an action
of the Galois group I of F s over F preserving the pinning. The Tannakian group
considered above is then identified with the fixed point subgroup (G∨Q`)

I . This
group is a possibly disconnected algebraic group over Q`, whose neutral component
is reductive.

Remark 1.1. It is quite remarkable that the Tannakian group above only depends
on G, and not on the choice of special facet. In fact there are reductive groups
that admit essentially different special facets; the associated affine Grassmannians
are not isomorphic (and, in fact, have quite different geometric properties), yet the
associated categories of perverse sheaves are equivalent. See [Zhu15, p. 411] for
more detailed comments on this phenomenon. The same phenomenon occurs for
the categories with integral or modular coefficients considered below.

1.3. Fixed points of groups of pinning-preserving automorphisms of re-
ductive group schemes. The equivalence of [MV07] (considered here in the set-
ting of étale sheaves) has a version where the field of coefficients is replaced by a
ring Λ which is either a finite field of characteristic ` 6= p or the ring of integers of a
finite extension of Q`. It therefore seemed reasonable to expect a generalization of
the equivalences of [Zhu15, Ric16] for such coefficients, involving the group scheme
(G∨Λ)I of fixed points of the action as above on the dual split reductive group scheme
G∨Λ over the given ring of coefficients Λ.

As a first step towards this goal, in the companion paper [ALRR23] we study
the group schemes that arise in this way, exploiting crucially the fact that the
action of I stabilizes the pinning of G∨Λ. We show in particular that these group
schemes are always flat over Λ (so, their categories of representations are abelian),
but not necessarily smooth; in particular, for an appropriate action of Z/2Z on
GL2n+1,Z2 the group of fixed points turns out to be an example of a non-reductive
quasi-reductive group scheme in the sense of Prasad–Yu [PY06].

1.4. Nearby cycles and the relation with the dual group. The reason why
the dual group G∨Λ of F s ⊗F G occurs in this story is the following. Consider our
integral model G over F[[t]] and the associated affine Grassmannian GrG , but also
the group scheme over the ring F s[[z]] (where z is another formal variable) obtained
by base change from the split group F s ⊗F G. Then GrG can be described as
a degeneration of the affine Grassmannian GrF s[[z]]⊗FG (an ind-scheme over F s):
there exists an ind-scheme GrG,S over the spectrum S of the integral closure of F[[t]]
in F s and a diagram with cartesian squares

(1.1)

GrF s[[z]]⊗FG GrG,S GrG

Spec(F s) S Spec(F).

Associated with this diagram we have a nearby cycles functor sending perverse
sheaves on GrF s[[z]]⊗FG (which can be described as representations of G∨Λ via the
“usual” geometric Satake equivalence) to perverse sheaves on GrG . The main result
of the paper is an equivalence of monoidal categories

(1.2) PervL+G(GrG ,Λ) ∼= Rep((G∨Λ)I),
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between the categories of L+G-equivariant Λ-perverse sheaves on GrG and of repre-
sentations of (G∨Λ)I on finitely generated Λ-modules, under which the nearby cycles
functor considered above corresponds to the functor of restriction along the nat-
ural embedding (G∨Λ)I ⊂ G∨Λ. This is summarized in the following commutative
diagram:

PervL+G(GrF s[[z]]⊗FG,Λ) Rep(G∨Λ)

PervL+G(GrG ,Λ) Rep((G∨Λ)I).

∼
“usual” geometric Satake

nearby cycles restriction

∼
(1.2)

As for the usual geometric Satake equivalence, for a perverse sheaf F , the under-
lying Λ-module of the representation associated with F is the total cohomology
H•(GrG ,F ).

1.5. Comments on the proof. The proof of the equivalence (1.2) in the `-adic
case is based on a general result of Bezrukavnikov regarding central functors with
domain the category of representations of an algebraic group. We do have such
a functor for arbitrary coefficients thanks to the constructions explained in §1.4,
but Bezrukavnikov’s result has no counterpart for integral coefficients, and its di-
rect application for positive-characteristic coefficients in our setting presents some
difficulties. We therefore follow a different, and in some sense more explicit, route
and treat in parallel the cases of a finite extension K of Q` (for which we provide
a proof which is different from those in [Zhu15, Ric16]), its ring of integers O, and
the residue field k of O, using in a crucial way some “change of scalars” arguments
to transfer information from one case to another.

Part of our constructions are parallel to those used in [MV07]: we consider
some “weight functors” constructed using semi-infinite orbits (building on geomet-
ric facts established in [AGLR22]), and show representability of these functors to
construct a flat Λ-bialgebra BG(Λ) and an equivalence of monoidal categories be-
tween PervL+G(GrG ,Λ) and the category of BG(Λ)-comodules which are finitely
generated over Λ. Further, we show that we have canonical isomorphisms

(1.3) BG(K) ∼= K⊗O BG(O), BG(k) ∼= k⊗O BG(O).

The nearby cycles functor of §1.4 and the Tannakian formalism provide a morphism
of Λ-bialgebras O(G∨Λ)→ BG(Λ), which is easily seen to factor through a morphism

(1.4) O((G∨Λ)I)→ BG(Λ),

and what remains to be seen is that this morphism is an isomorphism.
Here we note a first important difference with the constructions in [MV07]: in the

present setting, we do not know any geometric construction of the commutativity
constraint for convolution in PervL+G(GrG ,Λ) that corresponds under (1.2) to the
obvious commutativity constraint for the tensor product of representations. (This
is due to the absence, in this setting, of the Bĕılinson–Drinfeld deformations of the
affine Grassmannian over products of curves.) To bypass this difficulty, we prove
surjectivity of the morphism (1.4) in case Λ = K; this implies in particular that
BG(K) is commutative. Using (1.3) we deduce that BG(O) is commutative, and
then that BG(k) is commutative too.

The other argument for which the Bĕılinson–Drinfeld deformations are crucially
used in [MV07] is in the construction of the monoidal structure on the “fiber functor”
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given by total cohomology (which induces the comultiplication in BG(Λ)). Here we
bypass this difficulty in a different way, constructing this monoidal structure by a
method which is new even in the setting of [MV07], and which corrects a pervasive
error in the literature on this topic (see Remark 5.6).

Once these properties are known it is not difficult to check that

G∨Λ := Spec(BG(Λ))

is a group scheme over Λ, and that (1.4) provides a morphism of group schemes
G∨Λ → (G∨Λ)I . To prove that this morphism is an isomorphism we first treat the case
of relative rank 1, and exploit once again the possibility of transferring information
between coefficients K, O and k. We also use a number of properties of the groups
(G∨Λ)I proved in [ALRR23], and specific arguments to treat the case when the
quasi-reductive group over Z2 mentioned in §1.3 appears.

Remark 1.2. We emphasize that (G∨Λ)I is not a reductive group scheme over Λ in
general. We find it remarkable that such groups can arise as a Tannakian group for
a category of perverse sheaves.

Remark 1.3. In the case where F = C, one can also consider GrG(C) with the
analytic topology, and work with sheaves of Λ-modules where Λ is any unital,
commutative, noetherian ring of finite global dimension as in [MV07]. In particular,
in the analytic setting, one can take Λ = Z. The main results of this paper should
remain valid in the analytic setting, with minor modifications to the proofs, but
with one caveat: In this paper, we work with étale sheaves on algebraic stacks,
and we are not aware of a reference that treats analytic sheaves on stacks in the
appropriate generality. However, this issue can likely be circumvented by working
with “equivariant derived categories in families” as in [AR, Chapter 10].

Remark 1.4. Thibaud van den Hove has announced a motivic refinement of the
ramified Satake equivalence with coefficients in Z[ 1

p ], Q, or F` for ` 6= p.

1.6. Motivation. The main motivation for the constructions in [Zhu15, Ric16] was
the application to some properties of Shimura varieties. At this point it does not
seem that our integral and modular versions lead to any specific new application in
this direction; in fact our desire to establish the equivalence (1.2) rather came from
representation theory. Namely, in many cases the group (G∨k )I is still a reductive
group. It was conjectured by Brundan [Bru98], and proved by him in most cases,
that the restriction to (G∨k )I of any tilting G∨k -module remains tilting. (The re-
maining cases were later treated by van der Kallen [vdK01]). This proof is based on
case-by-case considerations, which in our opinion does not explain the true meaning
of this property. We hope that the geometric description of the restriction functor
in terms of nearby cycles will lead to an alternative (and more satisfactory) proof
of this property.

Let us also point out that in the recent update of Fargues–Scholze [FS21, §VIII.5]
a uniform proof of this result, not relying on case-by-case considerations, is given
under the assumption that I acts on G∨k through of finite quotient of order prime
to the characteristic of k, see [FS21, Theorem VIII.5.15]. It would be interesting
to see whether the coprimality assumption can be removed in the present setting.

1.7. Contents. In Section 2 we recall (and sometimes complete) some results on
the geometry of affine Grassmannians associated with special parahoric models of
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reductive groups, following [Zhu15, Ric16]. In Section 3 we recall (and, again, some-
times complete) results from [AGLR22] and Haines–Richarz [HR21] which form the
basis for the construction of the weight (or “constant term”) functors. In Section 4
we introduce the category of equivariant sheaves on our affine Grassmannian, and
some of the structures we have on this category. In Sections 5 we construct a
monoidal structure on the total cohomology functor, and in Section 6 we construct
the bialgebra BG(Λ) from §1.5, and establish some of its basic properties. Section 7
links our constructions to the “absolute” case studied in [MV07]. In Section 8 we
explain the construction of the nearby cycles functor from §1.4, and how to obtain
from it the morphism (1.4). Finally, in Section 9 we show that this morphism is an
isomorphism, which completes the proof of the equivalence (1.2).

The paper finishes with two appendices: in Appendix A we prove that L+G-
equivariance is automatic for perverse sheaves on GrG which are constant along
L+G-orbits, and in Appendix B we collect the results on étale sheaves on stacks
that are used in the main text.

1.8. Acknowledgements. We thank Julien Bichon and Victor Ostrik for answer-
ing some questions on Hopf algebras, Tom Haines for providing the argument in
Lemma 2.6(2), Thibaud van den Hove for helpful comments on a prelimary version
of this manuscript, Peter Scholze for discussions surrounding Brundan’s conjecture,
Jize Yu for discussions surrounding [Yu22], and Weizhe Zheng for answering some
questions about [LZ17b, LZ17a].

2. Affine Grassmannians associated with special facets

2.1. Loop groups and affine Grassmannians. Let k be a field and x be an
indeterminate. Given a k-algebra R we consider the rings R[[x]] and R((x)) of power
and Laurent power series in x with coefficients in R respectively. Given an affine
group scheme H over k[[x]], resp. an affine group scheme H over k((x)), we can
define the positive loop group L+H, resp. the loop group LH, as the functor from
k-algebras to groups defined by

L+H(R) = H(R[[x]]), resp. LH(R) = H(R((x))).

It is well known (see e.g. [Ric20, Lemma 3.17]) that the functor LH is represented
by an ind-affine group ind-scheme over k, and that L+H is represented by an affine
group scheme over k. Regarding L+H, more specifically, for any i ≥ 0 we can
consider the functor L+

i H defined by L+
i H(R) = H(R[x]/(xi+1)). Then we have

L+H = lim
i≥0

L+
i H,

and for any i ≥ 0 the functor L+
i H is an affine scheme, which is smooth over k

if H is smooth over k[[x]]. Note also that we have an obvious morphism of group
ind-schemes

L+H → L(H⊗k[[x]] k((x))),

which is representable by a closed immersion if H is of finite type.
Let H be an affine group scheme over k[[x]], and set H := H ⊗k[[x]] k((x)). The

affine Grassmannian associated with H is the fppf quotient [LH/L+H]fppf , i.e. the
fppf sheaf associated with the presheaf

(2.1) R 7→ LH(R)/L+H(R).
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It is a standard fact (see e.g. [Ric20, Proposition 3.18]) that ifH is smooth over k[[x]]
this sheaf identifies with the functor GrH from k-algebras to sets sending R to the
set of isomorphism classes of pairs (E , α) where E → Spec(R[[x]]) is an fppf1H-torsor
and α is a section of E over Spec(R((x))). In particular, this functor is represented
by a separated ind-scheme of ind-finite type over k; see [Ric20, Theorem 3.4]. In
fact, [Ric20, Proposition 3.18] also contains the following claim, which will be useful
in the present paper.

Lemma 2.1. If H is a smooth affine group scheme over k[[x]], then we have
GrH = [LH/L+H]ét, i.e. the functor GrH is also the étale sheafification of the
presheaf (2.1).

Remark 2.2. (1) What we call the affine Grassmannian of H is sometimes
called the partial affine flag variety of H, at least when H is a parahoric
group scheme in the sense of Bruhat–Tits (see e.g. [PR08]). This is justified
by the fact that partial affine flag varieties attached to split reductive groups
over k (as e.g. in Görtz [Gör10, Definition 2.6]) are special cases of this
construction. The cases that we will consider below give rise to ind-schemes
whose properties are very close to those of the “usual” affine Grassmannians
as considered in [MV07, Gör10]. To simplify terminology and notation,
and following the conventions in [Zhu17, Ric20], we will call all of these
ind-schemes affine Grassmannians.

(2) It is proved in Česnavičius [Čes24, Theorem 2.5] that ifH is the base change
of a reductive group scheme over k, then GrH is the Zariski sheafification
of the presheaf quotient LH/L+H, and moreover that no sheafification is
needed under additional assumptions, see [Čes24, Theorem 3.4]. These
results do not apply in the general setting considered below, and we do not
know if these properties are satisfied in our case.

The following fact is clear from the definitions as functors.

Lemma 2.3. Let H be a smooth affine group scheme over k[[x]]. If k′ is an extension
of k, there exist canonical isomorphisms of k′-(ind-)schemes

L(k′((x))⊗k((x)) H)
∼−→ k′ ⊗k (LH), L+(k′[[x]]⊗k[[x]] H)

∼−→ k′ ⊗k (L+H),

Grk′[[x]]⊗k[[x]]H
∼−→ k′ ⊗k GrH.

For any k-scheme Y and any y ∈ Y (k) we have the corresponding tangent space
TyY , see [Sta22, Tag 0B2C], which identifies with the subset of Y (k[ε]/ε2) consisting
of points whose image under ε 7→ 0 in Y (k) is y. This definition extends in the
obvious way to ind-schemes. In particular, ifH is a smooth affine group scheme over
k[[x]], and setting as above H := H ⊗k[[x]] k((x)), we can consider the Lie algebras
Lie(LH) and Lie(L+H) of the group ind-scheme LH and of the group scheme
L+H, defined as the tangent spaces at their unit point. We can also consider the
base point e of GrH, and the associated tangent space TeGrH.

Lemma 2.4. Let H be a smooth affine group scheme over k[[x]]. There exists a
canonical identification

TeGrH ∼= Lie(LH)/Lie(L+H).

1Since H is assumed to be smooth here, the notions of fpqc, fppf or étale torsors coincide.
Moreover, any such torsor is representable by an H-principal bundle, that is, a (necessarily smooth
affine) scheme which is étale locally on the base isomorphic to H.

https://stacks.math.columbia.edu/tag/0B2C
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Proof. The exact sequence of pointed sheaves 1→ L+H → LH → GrH → 1 induces
an exact sequence of k-vector spaces

0→ Lie(L+H)→ Lie(LH)→ TeGrH.

In fact this sequence is also exact on the right: by Lemma 2.3 and compatibility of
tangent spaces with extension of the base field, without loss of generality we may
and do assume that k is algebraically closed. Then this easily follows from the fact
that

GrH(k[ε]/ε2) = LH(k[ε]/ε2)/L+H(k[ε]/ε2)

by Lemma 2.1, since k[ε]/ε2 is a strictly henselian ring. �

In this paper, we will apply the affine Grassmannian construction in two different
settings, that we now explain. Let F be an algebraically closed field, and set

F := F((t)), OF := F[[t]]

where t is an indeterminate. We denote by F s a separable closure of F , and set

I := Gal(F s/F ),

which is the inertia group of F as the residue field F is algebraically closed. For
any F -scheme X we will write XF s for F s ⊗F X.

Given a smooth affine group scheme H over OF , we consider the associated affine
Grassmannian GrH over F (where the indeterminate x is equal to t). On the other
hand, if K is either F or F s and P is a smooth affine group scheme over K, and if z
is an indeterminate, we also consider the above construction for the smooth group
scheme K[[z]]⊗K P over K[[z]] (and the indeterminate x = z) to obtain the K-ind-
scheme GrK[[z]]⊗KP . This ind-scheme is the object considered in [MV07] or [Gör10,
Definition 2.5]. Lemma 2.3 implies that if P is a smooth affine group scheme over
F we have an identification

(2.2) GrF s[[z]]⊗Fs (F s⊗FP )
∼−→ F s ⊗F GrF [[z]]⊗FP .

2.2. Reductive groups and special facets. From now on we fix a smooth affine
group scheme G over OF , and set

G := F ⊗OF G.
It is important to know exactly for which G the associated ind-scheme GrG is ind-
proper (equivalently, ind-projective, as it is always ind-quasi-projective). A full
criterion can be found in [Lou22, Théorème 5.2], and relates to (a generalization
of) Bruhat–Tits theory. For our purposes, we will assume that G is a connected
reductive group over F and that the special fiber F⊗OF G is connected; in this case
it was shown (earlier) in [Ric16, Theorem A] that GrG is ind-proper if and only if
G is a parahoric group scheme in the sense of Bruhat–Tits [BT84].

The case that will be relevant in this paper is the following. Consider the
(extended) Bruhat–Tits building B(G,F ) associated with the reductive group G
over the local field F . The parahoric group schemes are attached to the facets in
B(G,F ). We henceforth impose the following two assumptions:

• G is the parahoric group scheme attached to some facet a ⊂ B(G,F ).
• The facet a is special.

The latter assumption is equivalent to a certain geometric condition on GrG :
see [Ric16, Theorem B]. For an explicit example of this setting with G nonsplit,
see [Ric13, §4].
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2.3. Tori, (co)weights, and (co)roots. By Steinberg’s theorem,2 G is quasi-
split, i.e. there exist Borel subgroups B ⊂ G defined over F . By [BT65, Corol-
laire 4.16], any such B contains a maximal F -split torus A ⊂ G in its radical, and
by [BT65, Théorème 4.15] the centralizer T := ZG(A) of A is then a Levi sub-
group of B, and thus a maximal torus of G. The facet a belongs to the apartment
A (G,A′, F ) associated with some maximal F -split torus A′. By conjugacy of max-
imal F -split tori in G (see [BT65, Théorème 4.21]), we can and will assume that
A = A′.

Let us denote by A, resp. T , the scheme-theoretic closure of A, resp. T , in G.
By [Ric16, Appendix 1], T is the unique parahoric group scheme of T . As explained
in [PR08, §3.b], T therefore identifies with the connected Néron model of T . The
group scheme A is also the scheme-theoretic closure of A in T ; in view of [BT84,
§4.4], A is therefore the natural split torus extending A, which coincides with its
connected Néron model.

Recall that if H is an F -torus, the F s-torus HF s is split, see [BT65, Proposi-
tion 1.5]; we will denote by X∗(H), resp. X∗(H), its character, resp. cocharacter,
lattice. (We emphasize that, contrary to what the notation might suggest, in gen-
eral X∗(H) and X∗(H) consist of characters and cocharacters of HF s and not of
H. If H is already split however, they can be seen as characters and cocharacters
of H.) Given a group C and a Z-module M endowed with a linear action of C,
we will denote by MC := Z⊗Z[C] M the module of coinvariants. (Here Z[C] is the
group algebra of C over Z, and Z is endowed with the trivial action of C.)

In our present setting, we will in particular consider the torus T , its base change
TF s , and the lattices X∗(T ) and X∗(T ). The group I acts on X∗(T ), and this
action factors through a finite quotient since T in fact splits over a finite separable
extension; we will consider the associated coinvariants X∗(T )I . Recall the Kottwitz
homomorphism T (F )→ X∗(T )I , see e.g. [PR08, §2.a.2]; this morphism is functorial
on the category of F -tori, compatible with products and is given for T = Gm by
the natural map F× → F×/O×F = X∗(Gm), where the identification is induced
by µ 7→ µ(t). As explained in [PR08, §5.a], this morphism factors through an
isomorphism

(2.3) T (F )/T (OF )
∼−→ X∗(T )I .

The reductive group GF s over F s is split since it admits the split maximal torus
TF s , see [DG11, Exp. XXII, Proposition 2.2]. We can therefore consider its roots
and coroots with respect to TF s , which will be denoted

Φabs ⊂ X∗(T ) and Φ∨abs ⊂ X∗(T )

respectively. (The subscript “abs” stands for “absolute.”) These subsets are stable
under the I-actions on X∗(T ) and X∗(T ). The nonzero weights of TF s in the
Lie algebra of the Borel subgroup BF s ⊂ GF s form a system of positive roots
Φ+

abs ⊂ Φabs which is stable under the action of I. The subset of dominant coweights
of TF s (with respect to this choice of positive roots) will be denoted X∗(T )+.

We will consider in particular the sublattice ZΦ∨abs ⊂ X∗(T ) generated by the
coroots. The quotient X∗(T )/ZΦ∨abs is called the algebraic fundamental group of G,
and is denoted π1(G).

2Here “Steinberg’s theorem” refers to [Ste65, Corollary 10.2(a)]. This statement has the as-
sumption that the base field is perfect, but it is well known (and explicitly stated in [BS68, §8.6])
that this assumption can be removed if the group is assumed to be reductive.
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Lemma 2.5. The exact sequence ZΦ∨abs ↪→ X∗(T ) � π1(G) induces an exact
sequence

(ZΦ∨abs)I ↪→ X∗(T )I � π1(G)I .

Proof. By right exactness of the coinvariants functor, it suffices to prove that the
morphism (ZΦ∨abs)I → X∗(T )I is injective. However, ZΦ∨abs has a basis consisting
of the simple coroots, which is permuted by I. As a consequence (ZΦ∨abs)I is free,
with a basis in bijection with I-orbits of simple coroots. To prove the claim, it
therefore suffices to prove that the induced morphism

(2.4) Q⊗Z
(
(ZΦ∨abs)I

)
→ Q⊗Z

(
X∗(T )I

)
is injective. Here the first term identifies with (Q ⊗Z ZΦ∨abs)I , and the second one
with (Q⊗Z X∗(T ))I . Now the subspace Q⊗Z ZΦ∨abs ⊂ Q⊗Z X∗(T ) has an I-stable
complement, consisting of the elements orthogonal to all roots, which implies the
injectivity of (2.4). �

The modules considered in Lemma 2.5 appear in the description of the set of con-
nected components π0(GrG) of GrG ; namely, by [PR08, Theorem 0.1] the Kottwitz
morphism induces a bijection

(2.5) π0(GrG)
∼−→ π1(G)I .

Now we consider the lattices X∗(A) and X∗(A) associated with the split torus
A; the system of (relative) roots of (G,A) will be denoted

Φ ⊂ X∗(A).

Restriction along A ⊂ T induces a canonical morphism X∗(T ) → X∗(A), which is
I-equivariant with respect to the trivial action on X∗(A). Since G is quasi-split,
this morphism sends Φabs onto Φ. The image Φ+ of Φ+

abs is a system of positive
roots for Φ; moreover, if we denote by Φs

abs, resp. Φs, the associated basis of Φabs,
resp. Φ, then Φs

abs is stable under the action of I, and our morphism X∗(T )→ X∗(A)
restricts to a surjection

(2.6) Φs
abs � Φs

whose fibers are exactly the I-orbits in Φs
abs. (For all of this, see [BT84, §4.1.2].)

2.4. Iwahori–Weyl group and Schubert varieties. The L+G-orbit subschemes
inside GrG are smooth and locally closed, giving rise to a topological stratification.
We will now describe these orbits together with their closures, following [Ric13,
§§1-2] and [Ric16, §2.1 and §3].

The Iwahori–Weyl group of (G,A) is the quotient

W :=
(
NG(A)

)
(F )/T (OF ),

where NG(A) is the normalizer of A in G. This group contains the quotient

T (F )/T (OF ) ∼= X∗(T )I

(see (2.3)) as a normal subgroup, and the quotient is the finite Weyl group

W0 :=
(
NG(A)

)
(F )/T (F ).

Setting
Wa :=

(
NG(A)(F ) ∩ G(OF )

)
/T (OF ),

the composition
Wa ↪→W →W0
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is an isomorphism (see [PR08, Appendix, Proposition 13] or [Ric13, Remark 1.4]).
So we obtain an identification

W ∼= Wa nX∗(T )I .

Consider the natural composition X∗(A)→ X∗(T )→ X∗(T )I ; the induced mor-
phism

(2.7) a : Q⊗Z X∗(A)→ Q⊗Z (X∗(T )I)

is an isomorphism. We set

X∗(T )+
I = {λ ∈ X∗(T )I | ∀α ∈ Φ+, 〈a−1(λ), α〉 ≥ 0},

where λ denotes the image of λ in Q⊗Z (X∗(T )I).

Lemma 2.6. (1) The composition

X∗(T )+
I ↪→ X∗(T )I � X∗(T )I/W0

is a bijection; in other words, X∗(T )+
I is a system of representatives for the

W0-orbits in X∗(T )I .
(2) The composition

X∗(T )+ ↪→ X∗(T ) � X∗(T )I

factors through a map X∗(T )+ → X∗(T )+
I . This map is surjective if one of

the following equivalent conditions holds, where Z is the (scheme-theoretic)
center of G:
(a) Z is a torus;
(b) the abelian group X∗(Z) of characters of F s ⊗F Z is torsion free;
(c) the natural map X∗(T )→ X∗(T/Z) is surjective.

Proof. (1) Let Z be the center of G, and consider the adjoint group Gad := G/Z.
Let also Tad, resp. Aad, be the image of T , resp. A, in Gad; then Tad, resp. Aad, is a
maximal, resp. maximal split, torus of Gad, see [BT72, Théorème 2.20]. If we denote
by Φad, resp. Wad,0, the (relative) root system, resp. Weyl group, of (Gad, Aad),
then the quotient map G → Gad induces bijections Φ ∼= Φad and W0

∼= Wad,0,
compatible with the action of the latter on the former. So the map T → Tad

induces a commutative diagram of pointed sets

X∗(T )+
I Q+ X∗(Tad)+

I

X∗(T )I/W0 Q/W0 X∗(Tad)I/W0,

where Q is the image of X∗(T )I → X∗(Tad)I and Q+ is its intersection with
X∗(Tad)+

I . The left horizontal maps are surjective. Moreover, since the action
of W0 and the pairing with the relative roots is trivial on ker(X∗(T )I → X∗(Tad)I),
their fibers are canonically bijective to this kernel, which is a subgroup of the
monoid X∗(T )+

I . Hence, to prove our claim it suffices to prove bijectivity of the
map Q+ → Q/W0.

For this it is convenient to make the connection with the “échelonnage root
system” as follows. Fixing a point in a defines an identification of

V := X∗(Aad)⊗Z R = X∗(Tad)I ⊗Z R
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(see (2.7)) with the apartment A (Gad, Aad, F ) on which the Iwahori–Weyl group
Wad = W (Gad, Aad) acts by affine transformations. There exists a reduced root
system Σ ⊂ V ∗, called échelonnage root system by Bruhat–Tits, such that the
associated affine Weyl group Waf(Σ) is isomorphic to the Iwahori–Weyl group
Wsc = W (Gsc, Asc) of the simply connected cover Gsc → Gad (see [BT72, Propo-
sition 2.24]) with Asc being the preimage of Aad in Gsc, and such that the iden-
tification Waf(Σ) = Wsc is compatible with the actions on V ; see [Hai18, Section
6.1]. In particular, W0(Σ) = W0 for the finite Weyl groups. One necessarily has
Q · Φ = Q · Σ (in fact, those are the same up to multiples of 2±1), so the positive
relative roots Φ+ determine a system of positive roots Σ+ ⊂ Σ. In V we have (in
general strict) inclusions of Z-sublattices

Q∨(Σ) = image(X∗(Tsc)I → X∗(Tad)I) ⊂ Q ⊂ X∗(Tad)I ⊂ P∨(Σ),

where Q∨(Σ) ⊂ P∨(Σ) is the coroot (resp. coweight) lattice of Σ, and Tsc is the
centralizer of Asc in Gsc (which is the same as the preimage of Tad in Gsc). Here we
note that X∗(Tad)I is torsion free because X∗(Tad) admits a basis permuted by I
(namely, the fundamental coweights). Hence, the bijectivity of Q+ → Q/W0 follows
from standard facts on reduced root systems.

(2) Since the positive relative roots Φ+ are restrictions of the positive absolute
roots Φ+

abs, the restriction of the quotient map X∗(T )→ X∗(T )I to X∗(T )+ factors
through a map X∗(T )+ → X∗(T )+

I .
To see that the conditions (2a), (2b) and (2c) are equivalent we note that the

center Z of G is a F -group scheme of multiplicative type. So Z is a torus if and
only if X∗(Z) is torsion free, which shows the equivalence of (2a) and (2b). Next,
the exact sequence 1 → Z → T → Tad → 1 (where we use the notation of the
proof of (1)) induces a short exact sequence 0 → X∗(Tad) → X∗(T ) → X∗(Z) → 0
of Z-modules where X∗(Tad) and X∗(T ) are torsion free. Applying the functor
HomZ-Mod(-,Z) we obtain an exact sequence

0→ HomZ-Mod(X∗(Z),Z)→ X∗(T )→ X∗(Tad)→ Ext1
Z-Mod(X∗(Z),Z)→ 0.

Hence, X∗(Z) being torsion free is equivalent to the surjectivity of X∗(T )→ X∗(Tad),
which shows the equivalence of (2b) and (2c).

Next, we show surjectivity of the map X∗(T )+ → X∗(T )+
I in case G = Gad in the

notation used above. In this case, the fundamental coweights (ω∨α : α ∈ Φs
abs) form

a Z-basis of X∗(T ), and a Z≥0-basis of X∗(T )+. For any α ∈ Φs
abs, the image ω̄∨α

of ω∨α in X∗(T )I only depends on the orbit I · α, and the family (ω̄∨α : α ∈ Φs
abs/I)

forms a Z-basis of X∗(T )I . We claim that this family is also a Z≥0-basis of X∗(T )+
I ,

which will imply the desired claim.
In fact, the map a in (2.7) is a composition of the natural maps

Q⊗Z X∗(A)
a1−→ Q⊗Z X∗(T )

a2−→ Q⊗Z X∗(T )I .

For α, β ∈ Φs
abs one has

〈ω̄∨α , β|A〉 = 〈a1(ω̄∨α), β〉.

If we fix a finite quotient Ī of I through which the action on X∗(T ) factors, then
the element a1(ω̄∨α) is Ī-invariant, so

〈a1(ω̄∨α), β〉 = 1
|Ī| 〈
∑
i∈Ī i · a1(ω̄∨α), β〉 = 1

|Ī| 〈a1(ω̄∨α),
∑
i∈Ī i · β〉.
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Now
∑
i∈Ī i ·β is I-invariant, and the elements a1(ω̄∨α) and ω∨α have the same image

in Q⊗Z X∗(T )I , hence we have

1
|Ī| 〈a1(ω̄∨α),

∑
i∈Ī i · β〉 = 1

|Ī| 〈ω
∨
α ,
∑
i∈Ī i · β〉 =

{
1
|I·α| if β ∈ Iα;
0 otherwise.

From this computation we deduce that a linear combination of the ω̄∨α has nonneg-
ative pairing with any simple (relative) root if and only if the coefficient of each ω̄∨α
is nonegative, which proves the desired claim.

Finally, we will prove that the map X∗(T )+ → X∗(T )+
I is surjective in case the

morphism X∗(T )→ X∗(Tad) is surjective. Setting K := ker(X∗(T )→ X∗(Tad)), we
consider the diagram of natural maps

0 K X∗(T ) X∗(Tad) 0

KI X∗(T )I X∗(Tad)I 0.

If λ̄ ∈ X∗(T )+
I , then its image in X∗(Tad)I belongs to X∗(Tad)+

I , hence is the image
of some µ ∈ X∗(Tad)+ by the case treated above. If ν is any preimage of µ in X∗(T ),
then its image ν̄ in X∗(T )I has the same image as λ̄ in X∗(Tad)I . Hence there exists
η ∈ K whose image in KI has image λ̄− ν̄ in X∗(T )I . Then λ := ν + η has image
λ̄ in X∗(T )I , and its image in X∗(Tad) is µ. Since the pairing of any coweight of T
with an absolute root only depends on its image in X∗(Tad) we have λ ∈ X∗(T )+,
which finishes the proof. �

Remark 2.7. Contrary to what is asserted in [Ric16, Remark 3.8] and [HR20, page
3227, lines 30–31], the surjectivity of X∗(T )+ → X∗(T )+

I fails in general. Both
references use the false claim implicitly through [Zhu15, Proof of Corollary 2.8]
where the same false claim appears. The proof can be fixed using Corollary A.4
below by passing to adjoint groups and referring to Lemma 2.6(2) in this case.

For an explicit example, let G = SU3 be the special unitary group on a 3-
dimensional hermitian vector space defined by some separable quadratic extension
F ′/F . Then, X∗(T ) can be identified with the group Z3

Σ=0 of elements (a, b, c) ∈ Z3

with a + b + c = 0, with the non-trivial Galois involution in Gal(F ′/F ) acting by
(a, b, c) 7→ (−c,−b,−a). The subgroup (1 − I)Z3

Σ=0 identifies with the subset of
vectors (−b, 2b,−b) with b ∈ Z, and the map (a, b, c) 7→ a−c induces an isomorphism
Z3

Σ=0/(1 − I)Z3
Σ=0 ' Z. Hence, X∗(T ) → X∗(T )I identifies with Z3

Σ=0 → Z,
(a, b, c) 7→ a − c. The dominant elements (Z3

Σ=0)+ with respect to the upper
triangular Borel subgroup are given by the condition a ≥ b ≥ c in Z3

Σ=0 and
by a ≥ 0 in Z. An easy calculation shows that the image of (Z3

Σ=0)+ → Z+ = Z≥0

is 2Z≥0, so the map is not surjective.

The Iwahori–Weyl group W acts on the apartment A (G,A, F ) by affine trans-
formations. Any choice of a point in a defines an identification of

X∗(A)⊗Z R = X∗(T )I ⊗Z R

(see (2.7)) with A (G,A, F ) such that an element µ of the subgroup T (F )/T (OF ) ∼=
X∗(T )I (see (2.3)) of W acts by translation by −µ. Let a0 be the alcove in
A (G,A, F ) containing a in its closure and which belongs to the chamber corre-
sponding under this identification to the chamber in X∗(A) ⊗Z R determined by



14 PRAMOD N. ACHAR, JOÃO LOURENÇO, TIMO RICHARZ, AND SIMON RICHE

B. This choice determines a structure of a quasi-Coxeter group on W ; see [PR08,
Appendix, Lemma 14] and [Ric13, §1] for details. In terms of this structure, one
can consider a subset

aW
a ⊂W

characterized in [Ric13, (1.5)], which is a system of representatives for the double
quotient

Wa\W/Wa
∼= X∗(T )I/W0,

and is thus in canonical bijection with the double quotient

G(OF )\G(F )/G(OF ) = L+G(F)\LG(F)/L+G(F);

see [Ric13, Lemma 1.3]. Since a is special, the subset aW
a has an explicit descrip-

tion, which follows from [Ric13, Corollary 1.8] or the more general claim [Ric16,
Lemma 3.9]: it coincides with the subset

X∗(T )+
I ⊂ X∗(T )I ⊂W.

Any µ ∈ X∗(T )I determines a point in T (F )/T (OF ) (see (2.3)), and hence an
F-point of GrG , which we denote tµ. We denote by GrµG the L+G-orbit of tµ, and
by Gr≤µG the scheme-theoretic closure of GrµG . We also denote by

(2.8) jµ : GrµG → GrG , j≤µ : Gr≤µG → GrG

the natural immersions. Then Gr≤µG is a projective variety over F, and GrµG is a
smooth open dense subscheme of Gr≤µG , which admits a paving by affine spaces;3

see [Ric16, §2.1] for details. This notation is justified by the following fact. Recall
from Lemma 2.5 and its proof that the submodule (ZΦ∨abs)I ⊂ X∗(T )I admits a
basis in natural bijection with the I-orbits of simple roots. We can therefore define
an order ≤ on X∗(T )I by declaring that λ ≤ µ iff µ− λ belongs to the submonoid
generated by this basis. Then on the underlying sets we have

(2.9) |Gr≤µG | =
⊔

λ∈X∗(T )+
I

λ≤µ

|GrλG |;

see [Ric13, Corollary 1.8 and Proposition 2.8].
Let ρ ∈ Q⊗Z X∗(T ) be one-half the sum of the roots in Φ+

abs. Since this element
is I-invariant, the pairing

〈−, 2ρ〉 : X∗(T )→ Z
factors through a map X∗(T )I → Z, which we denote similarly. With this notation,
for any λ ∈ X∗(T )+

I we have

(2.10) dim(GrλG) = 〈λ, 2ρ〉,
see again [Ric13, Corollary 1.8 and Proposition 2.8].

Remark 2.8. It is known that Gr≤µG is always geometrically unibranch (i.e. the
normalization morphism is a universal homeomorphism, see [Kol16, Corollary 32]),
see [HR23, Proposition 3.1]. Under some additional mild assumptions, Gr≤µG turns
out to also be normal and Cohen–Macaulay, due to results of Faltings [Fal03],
Pappas–Rapoport [PR08], Fakhruddin–Haines–Lourenço–Richarz [FHLR22] and

3The paving by affine spaces in this general setting can be deduced from [PR08, Proposition 8.7]
using Demazure resolutions.
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the second named author [Lou23] (see also [HLR18, BR23] for failures of this prop-
erty). We do not need these results below, since universal homeomorphisms induce
equivalences on small étale topoi.

2.5. Convolution schemes. Given a smooth affine group scheme H over OF , we
can consider the “convolution functor” ConvH over F whose R-points consist of iso-
morphism classes of triples (E1, E2, α, β) where E1, E2 are H-torsors over Spec(R[[t]]),
α is a trivialization of E1 over Spec(R((t))), and β is an isomorphism between the
restrictions of E1 and E2 to Spec(R((t))). We have a “multiplication” morphism

m : ConvH → GrH, (E1, E2, α, β) 7→ (E2, β ◦ α),

where we use the moduli description of GrH recalled in §2.1, as well as the projection
map

pr1 : ConvH → GrH, (E1, E2, α, β) 7→ (E1, α).

It is clear that the product map

(2.11) (pr1,m) : ConvH → GrH ×GrH

is an isomorphism; in particular, this shows that ConvH is representable by an ind-
scheme, which is ind-projective if H is parahoric. In this case, m is ind-projective
as well.

This ind-scheme can also be constructed as a twisted product

(2.12) ConvH ∼= LH ×L+H LH/L+H

(where, as usual, H = F ⊗OF H, and we consider étale quotients). From this
perspective, given any locally closed subschemes X,Y ⊂ GrH where Y is L+H-
stable, we can define a locally closed subscheme

X ×̃ Y := (X ×GrH LH)×L+H Y ⊂ ConvH.

For instance, if G is as in §2.2, given λ, µ ∈ X∗(T )+
I , we set

Conv
(λ,µ)
G := GrλG ×̃GrµG .

The closures of these schemes are denoted by

Conv
≤(λ,µ)
G := Conv

(λ,µ)
G = Gr≤λG ×̃Gr≤µG .

In view of (2.9) we have

(2.13) |Conv
≤(λ,µ)
G | =

⊔
λ′,µ′∈X∗(T )+

I

λ′≤λ, µ′≤µ

|Conv
(λ′,µ′)
G |.

Note that in the special case where H is abelian, the left multiplication action
of L+H on GrH is trivial. We deduce an identification

(2.14) ConvH ∼= LH×L+H GrH ∼= GrH ×GrH if H is abelian.

We emphasize that this isomorphism is different from the one in (2.11).
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2.6. Some quotient stacks. In this subsection we introduce some stacks that will
be used later in our study of sheaves on GrH.

Let HkH be the Hecke stack (over F) associated with GrH, such that HkH(R)
is the category of triples (E1, E2, α) where E1, E2 are H-bundles on Spec(R[[t]]) and
α is an isomorphism between their restrictions to Spec(R((t))). We have a natural
morphism

h : GrH → HkH

sending (E , α) to (E0, E , α) where E0 is the trivial H-bundle. This morphism is an
L+H-bundle; as in [FS21, Proposition 6.1.7] it factors through an isomorphism

(2.15) [L+H\GrH]ét
∼−→ HkH

where the left-hand side is the étale quotient stack of GrH by the action of L+H.
(In particular, the left-hand side identifies with the fppf quotient stack of GrH by
the action of L+H.)

By the proof of its representability (see e.g. [Ric20], or [RS20, Lemma A.5] for a
more general result), the ind-scheme GrH admits a presentation GrH = colimi≥0Xi

where each Xi is an F-scheme of finite type such that the action of L+H on GrH
factors through an action on Xi, and such that the latter action factors though an
action of L+

niH for some ni ≥ 0. One can also assume that if i ≤ j we have ni ≤ nj ,
so that the composition L+H → L+

njH factors through the quotient morphism
L+
niH → L+

njH. Then we have

(2.16) HkH = colimi[L
+H\Xi]ét, [L+H\Xi]ét = lim

n≥ni
[L+
nH\Xi]ét.

(Here again, each étale quotient stack identifies with the corresponding fppf quotient
stack. Note that each [L+

nH\Xi]ét is an algebraic stack over F, see [Sta22, Tag 06FI],
which is moreover of finite type.)

We will also consider the Hecke convolution stack HkConvH over F, defined
in such a way that HkConvH(R) is the category of tuples (E1, E2, E3, α, β) where
E1, E2, E3 are H-bundles over Spec(R[[t]]), α is an isomorphism between the restric-
tions of E1 and E2 to Spec(R((t))), and β is an isomorphism between the restrictions
of E2 and E3 to Spec(R((t))). We have a canonical morphism

h̃ : ConvH → HkConvH

sending (E1, E2, α, β) to (E0, E1, E2, α, β) where E0 is the trivial H-bundle. This
morphism is an L+H-bundle, and factors through an isomorphism

[L+H\ConvH]ét
∼−→ HkConvH.

We also have descriptions of this stack similar to those in (2.16).
The morphisms pr1 : ConvH → GrH and m : ConvH → GrH have analogues at

the level of quotient stacks, which will also be denoted

pr1 : HkConvH → HkH, m : HkConvH → HkH,

and which send (E1, E2, E3, α, β) to (E1, E2, α) and (E1, E3, β ◦ α), respectively. We
also have morphisms

p : HkConvH → HkH ×HkH, p : ConvH → GrH ×HkH,

https://stacks.math.columbia.edu/tag/06FI
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where the former sends (E1, E2, E3, α, β) to
(
(E1, E2, α), (E2, E3, β)

)
, and the latter is

defined similarly. These maps fit into cartesian squares

(2.17)
HkConvH HkH ×HkH

HkH HkH × [L+H\pt]ét,

p

pr1

ConvH GrH ×HkH

GrH GrH × [L+H\pt]ét,

p

pr1

where the bottom horizontal arrows are induced by the obvious morphism pt →
[L+H\pt]ét.

In the case where H is abelian, we have a counterpart to (2.14): an isomorphism

(2.18) HkConvH ∼= HkH ×GrH if H is abelian.

In this case, the following diagram commutes:

(2.19)

GrH ×GrH ConvH GrH

HkH ×HkH

HkH ×GrH HkConvH HkH.

∼
(2.14)

h×id

h×h

h̃

m

h

∼
(2.18)

id×h
m

p

In later sections we will consider the morphisms m, p, h and h̃ for the group G,
but also for some subgroups. To avoid confusions, when necessary we will add a
subscript to these notations to indicate which group is considered.

3. Semi-infinite orbits

3.1. Attractors and fixed points in Bruhat–Tits theory. Recall that for any
base scheme S, given an S-scheme X endowed with an action of the multiplicative
group Gm,S we have associated attractor and fixed points functors from S-schemes
to sets, denoted X+ and X0; see e.g. [Ric19]. These functors are not always rep-
resentable, but they are under reasonable assumptions that will be satisfied in
all the examples we consider below. We also have natural morphisms of functors
X0 → X+ and X+ → X. The former admits a left inverse X+ → X0 (the “limit”
morphism). If X is separated over S then the morphism X+ → X is a monomor-
phism, see [Ric19, Remark 1.19(ii)].

Let us now consider the setting of Section 2, fix a cocharacter

λ : Gm,F → A ⊂ G,
and then make Gm,F act on G by conjugation via this cocharacter. Denote the
attractor and fixed-points functors by

Pλ := G+ and Mλ := G0,

respectively. These functors are represented by smooth subgroup schemes of G.
Indeed, by [CGP15, Proposition 2.2.9], Pλ is a parabolic subgroup of G containing
A, and Mλ is a Levi factor of Pλ. Moreover, every parabolic subgroup of G can be
described in this way as an attractor.

Remark 3.1. (1) To amplify the preceding comment: if P ⊂ G is a parabolic
subgroup containing A, then P = Pλ for some λ ∈ X∗(A). (This follows
from the conjugacy of maximal F -split tori in P : see [BT65, Lemme 4.6 and
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Proposition 11.6].) In this case,Mλ is the unique Levi factor of P containing
A. The parabolic subgroup Pλ is standard with respect to B (i.e., contains
B) if and only if λ is dominant (with respect to Φ+

abs ⊂ X∗(T )).
(2) If one replaces λ by the opposite cocharacter −λ, then we obtain the same

Levi subgroup: M−λ = Mλ, and the parabolic subgroup P−λ is the opposite
parabolic subgroup such that Pλ ∩ P−λ = Mλ.

Next, we observe that λ extends uniquely to a cocharacter

λOF : Gm,OF → A ⊂ G

of OF -groups by the universal property of the Néron model A (or, in a more ele-
mentary way, by the equality HomOF -gps(Gm,OF ,A) = HomF -gps(Gm,F , A), which
follows from the facts that A is a split torus and Spec(OF ) is connected). We can
therefore consider, as above, the action of Gm,OF on G induced by λOF , as well as
the corresponding attractors and fixed points

Pλ := G+ and Mλ := G0

over OF . According to [HR21, Lemma 4.5] (and its proof), Pλ and Mλ are both
smooth affine group schemes over OF , and they coincide with the scheme-theoretic
closures of their counterparts in G:

(3.1) Pλ = Pλ and Mλ = Mλ.

In particular, the group schemes Pλ andMλ depend only on Pλ and Mλ, and not
on the choice of the cocharacter λ. The natural limit morphism Pλ →Mλ is split
by the embeddingMλ → Pλ, and its kernel Uλ is a smooth affine OF -group scheme
with connected unipotent geometric fibers.

SinceMλ contains A, we can consider the apartment A (Mλ, A, F ) in the building
B(Mλ, F ) ofMλ. This identifies with A (G,A, F ), hence we can consider the unique
facet aMλ

in A (Mλ, A, F ) containing a. In view of [Ric16, Appendix 1], we know
that:

• Mλ is the parahoric group scheme attached to the facet aMλ
⊂ B(Mλ, F );

• the facet aMλ
is special.

In other words,Mλ matches the set-up of §2.2. (As usual, these data depend only
on Mλ, and not on the choice of λ.)

3.2. Attractors and fixed points on the affine Grassmannian. We continue
with the setting of §3.1. The composition

(3.2) Gm,F ⊂ L+Gm,OF

L+λOF−−−−−→ L+G

and the L+G-action on GrG provide a Gm,F-action on the ind-scheme GrG . It is
clear by construction that this action preserves Schubert varieties. Furthermore,
by [HR21, Lemma 5.3] it is Zariski locally linearizable in the sense of [Ric19], and
thus the fixed points Gr0

G and the attractor Gr+
G (defined in the obvious way, gen-

eralizing the definition for schemes) are representable by ind-schemes (see [HR21,
Theorem 2.1]). Moreover the natural morphism Gr0

G → GrG is representable by a
closed immersion; the natural morphism Gr+

G → GrG is bijective (but not a homeo-
morphism); and its restriction to each connected component of Gr+

G is representable
by a locally closed immersion. Below we identify precisely this sub-ind-scheme, con-
firming the expectation in [HR21, Remark 4.8].
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The morphisms of group schemes

Mλ → Pλ → G
induce Gm,F-equivariant morphisms of the corresponding affine Grassmannians

GrMλ
→ GrG and GrPλ → GrG .

Since Gm,F acts trivially on GrMλ
, the former factors through a morphism

(3.3) GrMλ
→ Gr0

G .

Similarly, since the action of Gm,OF on Pλ extends to an action of the monoid
A1
OF

, the action of Gm,F on GrPλ extends to an action of A1
F, which implies that

the monomorphism (GrPλ)+ → GrPλ is an isomorphism. We deduce a morphism

(3.4) GrPλ = (GrPλ)+ → Gr+
G .

Proposition 3.2. The morphisms (3.3) and (3.4) are isomorphisms.

Remark 3.3. In particular, Proposition 3.2 and (3.1) show that Gr+
G , resp. Gr0

G ,
only depends on G and Pλ, resp. Mλ, and not on the actual choice of λ.

For the proof of this proposition we will need a preliminary result on tangent
spaces (see §2.1).

Lemma 3.4. Let e ∈ GrPλ(F) be the base point, and denote similarly its image
under (3.4). Then (3.4) induces an isomorphism

TeGrPλ
∼−→ TeGr+

G .

Similarly, if we denote by e′ ∈ GrMλ
(F) the base point and its image under (3.3),

then (3.3) induces an isomorphism

Te′GrMλ

∼−→ Te′Gr0
G .

Proof. We give the proof of the first claim, and leave that of the second one to the
reader. As the formation of attractors commutes with that of tangent spaces at
fixed points (see [Dri13, Proposition 1.4.11(vi)]), we have

TeGr+
G = (TeGrG)+;

moreover the right-hand side identifies with the subspace in TeGrG spanned by
weight vectors of nonnegative weight for the action of Gm,F induced by the action
on GrG . To prove the desired claim, we therefore have to show that (3.4) induces
an isomorphism

(3.5) (TeGrG)+ = TeGrPλ .

By Lemma 2.4, we have isomorphisms

TeGrG = Lie(LG)/Lie(L+G), TeGrPλ = Lie(LPλ)/Lie(L+Pλ).

The first isomorphism implies that

(TeGrG)+ =
(
Lie(LG)

)+
/
(
Lie(L+G)

)+
where (Lie(LG))+ is the subspace of Lie(LG) spanned by weight vectors of non-
negative weights, and similarly for (Lie(L+G))+. Hence proving (3.5) amounts to
proving an identification

(3.6)
(
Lie(LG)

)+
/
(
Lie(L+G)

)+
= Lie(LPλ)/Lie(L+Pλ).
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By [BT84, §§3.8.1–3.8.2, §4.6.2], the product map (u−, t, u+) 7→ u− · t · u+ gives
an open immersion of OF -schemes

(3.7)
∏

α∈Φnd,−

Uα × T ×
∏

α∈Φnd,+

Uα → G,

where Φnd ⊂ Φ is the system of non-divisible, relative roots for (G,A), and Φnd,+ =
Φ+ ∩ Φnd, Φnd,− = −Φnd,+. (Here, for any α, Uα is the “root group” associated
with α.) After applying the loop functor L, resp. positive loop functor L+, the
product map is still formally étale (and therefore identifies the tangent spaces), so
we obtain isomorphisms

Lie(LG) = Lie(LT )⊕
⊕
α∈Φnd

Lie(LUα),(3.8)

Lie(L+G) = Lie(L+T )⊕
⊕
α∈Φnd

Lie(L+Uα).(3.9)

Since Gm,F acts on Lie(LUα) with weights in {〈α, λ〉, 2〈α, λ〉}, passing to attractors
yields

Lie(LG)+ = Lie(LT )⊕
⊕
α∈Φnd

λ

Lie(LUα),

Lie(L+G)+ = Lie(L+T )⊕
⊕
α∈Φnd

λ

Lie(L+Uα),

where Φnd
λ = {α ∈ Φnd | 〈λ, α〉 ≥ 0}.

On the other hand, passing to attractors in the open immersion (3.7), by [HR21,
Corollary 2.3] we obtain an open immersion∏

α∈Φnd,−
λ

Uα × T ×
∏

α∈Φnd,+
λ

Uα → Pλ,

where Φnd,±
λ = Φnd,± ∩ Φnd

λ . As above we deduce identifications

Lie(LPλ) = Lie(LT )⊕
⊕
α∈Φnd

λ

Lie(LUα),(3.10)

Lie(L+Pλ) = Lie(L+T )⊕
⊕
α∈Φnd

λ

Lie(L+Uα).(3.11)

Comparing (3.8)–(3.9) with (3.10)–(3.11) we deduce the identification (3.6), which
finishes the proof. �

Proof of Proposition 3.2. In this proof we will use the following property of tangent
spaces. Let X be an F-scheme of finite type. For any F-algebra R and any y ∈
X(R) = (R ⊗F X)(R) we have the associated conormal sheaf ωy, see [DG70, II,
§4, 3.1], which is an R-module and has the property that if J ⊂ R is an ideal such
that J2 = 0 there is a canonical identification between HomR(ωy, J) and the set
of points y′ ∈ X(R) whose image in X(R/J) is the image of y; see [DG70, II, §4,
3.2]. In particular, if x ∈ X(F), ωx identifies with the dual of the finite-dimensional
F-vector space TxX, and if we denote by xR the image of x in X(R) we have
ωxR = R ⊗F ωx, see [DG70, I, §4, 1.4]. For any F-algebra R and any ideal J ⊂ R
such that J2 = 0, we deduce an identification between J ⊗F TxX and the set of
points y ∈ X(R) whose image in X(R/J) is (the image of) x. This property of
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course extends to ind-schemes of ind-finite type over F by passing to the colimit of
tangent spaces in any presentation.

Below we will consider various local artinian F-algebras. If R is such an algebra,
we will denote by rad(R) its Jacobson radical, i.e. its unique maximal ideal. We
will also denote by n(R) the minimal positive integer n such that rad(R)n = 0.
Note that if the field R/rad(R) is algebraically closed, then R is a strictly henselian
local ring. Using Lemma 2.1 we deduce that in this case we have

(3.12) GrPλ(R) = LPλ(R)/L+Pλ(R).

By [HR21, Proposition 4.7(i)], our maps are closed immersions. To finish the
proof, in view of [HLR18, Lemma 8.6 and Remark 8.7] it therefore suffices to check
that for any local artinian F-algebra R such that R/rad(R) is algebraically closed,
every R-valued point xR of Gr0

G , resp. Gr+
G , already lies in GrMλ

(R), resp. GrPλ(R).
We shall treat the case of the attractor and leave the case of fixed points to the
reader.

We proceed by induction on n(R). If n(R) = 1, then R is an algebraically closed
field. In this case, using base change we can assume that R = F; this case is treated
in [HR21, Proposition 4.7(iii)].

Now assume that n(R) > 1, and let J ⊂ R be an ideal such that J2 = 0 and
n(R/J) < n(R). (For instance, one can take J = rad(R)n(R)−1.) Consider the
R/J-valued point xR/J of Gr+

G associated with xR. By induction, the point xR/J
lies in GrPλ(R/J). By (3.12), we can lift xR/J to an R/J-valued point yR/J of
LPλ, and then further to an R-valued point yR of LPλ by formal smoothness. In
other words, replacing xR by y−1

R xR we may assume that xR/J is the base point
e of Gr+

G . By the reminder at the beginning of the proof, xR corresponds to an
element in Te(Gr+

G )⊗F J . By Lemma 3.4 and the same considerations, there exists
an R-point of GrPλ whose image in GrPλ(R/J) is e and whose image under (3.4)
is xR, which finishes the proof. �

We conclude this subsection with a remark on the convolution schemes ConvG ,
ConvMλ

and ConvPλ (see §2.5). Since L+G acts on ConvG on the left, the homo-
morphism (3.2) yields a Gm,F-action on ConvG , and one can consider the attractor
and fixed-point ind-schemes for this action. The same reasoning that led to (3.3)
and (3.4) lets us construct maps

ConvMλ
→ Conv0

G ,(3.13)

ConvPλ = (ConvPλ)+ → Conv+
G .(3.14)

In view of the isomorphism (2.11) (which is L+G-equivariant, and hence Gm,F-
equivariant), we obtain the following immediate consequence of Proposition 3.2.

Proposition 3.5. The morphisms (3.13) and (3.14) are isomorphisms.

3.3. Parabolic subgroups and cartesian diagrams. Let us now consider two
parabolic subgroups P, P ′ ⊂ G containing A and such that P ⊂ P ′. If we denote
by M and M ′ their Levi factors containing A, then we have M ⊂ M ′. Moreover,
P ∩M ′ is a parabolic subgroup of the reductive group M ′ containing A, and M
is its Levi factor containing A. Let P, P ′, M, and M′ be their scheme-theoretic
closures inside G (cf. (3.1)).

Point (3) of the following lemma involves fiber products of ind-schemes. For this
notion, see [Ric20, Lemma 1.10].
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Lemma 3.6. (1) The intersection P ∩M′ is the scheme-theoretic closure of
the group scheme P ∩M ′ insideM′, and is smooth over OF .

(2) The following commutative square of group schemes is cartesian:

P P ∩M′

P ′ M′.

(3) The following commutative squares of ind-schemes are cartesian:

GrP GrP∩M′

GrP′ GrM′ ,

ConvP ConvP∩M′

ConvP′ ConvM′ .

Proof. (1) Let λ ∈ X∗(A) be a cocharacter such that P = Pλ (see Remark 3.1).
Then from the definitions one sees that P ∩M′ is the attractor associated with the
Gm,OF -action onM′ defined by λ, so our claim is a special case of (3.1).

(2) The morphism P → P ′ is a closed immersion, and hence so is the induced
morphism P → P ′ ×M′ (P ∩M′); in other words, the associated morphism

O(P ′ ×M′ (P ∩M′))→ O(P)

is surjective. On the other hand this morphism becomes an isomorphism after
tensor product with F , and the fiber product P ′×M′ (P∩M′) is flat over Spec(OF ).
(Indeed the projection P ′ → M′ is smooth, so this fiber product is smooth over
P ∩M′, which is itself smooth over Spec(OF ) by (1).) This morphism is therefore
an isomorphism, which finishes the proof.

(3) Let us first consider the left-hand diagram. If R is an F-algebra, GrP(R)
classifies pairs consisting of an P-torsor on Spec(R[[t]]) and a trivialization on
Spec(R((t))). On the other hand, by (1),

(GrP′ ×GrM′ GrP∩M′)(R) = GrP′(R)×GrM′ (R) GrP∩M′(R)

parametrizes an P ′-torsor on Spec(R[[t]]) with a trivialization on Spec(R((t))), an P∩
M′-torsor on Spec(R[[t]]) with a trivialization on Spec(R((t))), and an isomorphism
between the inducedM′-bundles and their trivializations. Now from (2) we deduce
that the datum of an P-torsor is equivalent to that of an P ′-torsor, an P ∩M′-
torsor, and an isomorphism between the induced M′-bundles. The desired claim
follows.

The fact that the right-hand diagram is cartesian is immediate from the similar
property of the left-hand diagram and (2.11). �

3.4. Semi-infinite orbits. Let us now study further the case where the cocharac-
ter in X∗(A) is such that the attractor and fixed point sets in G are given by

G+ = B and G0 = T.

(This is indeed possible thanks to Remark 3.1.) Let B be the scheme-theoretic
closure of B in G. Then, by (3.1), B is smooth and we have

G+ = B and G0 = T .
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It is well known (see e.g. [PR08, §3.b]) that the underlying topological space of GrT
is discrete, with

(3.15) |GrT | = X∗(T )I

(see (2.3)). Since the morphism Gr+
G → Gr0

G induces a bijection on the sets of
connected components (see [Ric19, Proposition 1.17] and [HR21, Theorem 2.1]),
we deduce a bijection between the set of connected components of Gr+

G , i.e. of GrB,
and X∗(T )I .

For λ ∈ X∗(T )I , we will denote by Sλ the associated connected component
of Gr+

G . Then the natural map Sλ → GrG is representable by a locally closed
immersion, and the natural map ⊔

λ∈X∗(T )I

Sλ → GrG

is bijective. If we denote by S≤λ the ind-schematic closure of Sλ inside GrG , then
we have

(3.16) |S≤λ| =
⊔
µ≤λ

|Sµ|.

(This property is proved in [AGLR22, Proposition 5.4] for Witt vector affine Grass-
mannians; the same proof goes through in our present setting.) Choosing a presen-
tation GrG = colimiXi by L+G-stable projective k-schemes (see §2.6), for any i we
have

(3.17) |Gr+
G ×GrG Xi| =

⊔
λ∈X∗(T )+

I

|Sλ ×GrG Xi|,

and Gr+
G ×GrG Xi identifies canonically with the attractor for the induced Gm,F-

action on Xi. The intersection Sλ ×GrG Xi is a locally closed subscheme of Xi (in
particular, a scheme of finite type by [GW20, Example 3.45]) and it is empty unless
tλ ∈ Xi, which happens only for a finite number of λ’s.

If µ ∈ X∗(T )I and λ ∈ X∗(T )+
I then we can consider the intersection

Sµ ∩Gr≤λG ,

a locally closed subscheme of the projective scheme Gr≤λG , which is in particular an
F-scheme of finite type. For the statement of the next lemma, recall that X∗(T )+

I

is a system of representatives for X∗(T )I/W0, see Lemma 2.6(1).

Lemma 3.7. If µ ∈ X∗(T )I and λ ∈ X∗(T )+
I , the scheme

Sµ ∩Gr≤λG

is nonempty if and only if the only element µ′ ∈ (W0 ·µ)∩X∗(T )+
I satisfies µ′ ≤ λ.

In this case, this scheme is affine and equidimensional of dimension 〈µ+ λ, ρ〉.

Here we write 〈µ+λ, ρ〉 for 1
2 〈µ+λ, 2ρ〉 (which is an integer in the case considered

in the statement). Again, this result is proved in [AGLR22, Lemma 5.5] for ramified
groups over p-adic fields, but the arguments also apply in our current setting.

Of course one can play the same game with the Borel subgroup B− opposite
to B (with respect to T ), see Remark 3.1(2). The connected components of the
associated affine Grassmannian will be denoted (Tλ : λ ∈ X∗(T )I).
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3.5. Semi-infinite orbits on convolution schemes. We finish this section by
explaining how to adapt the discussion of §3.4 to the setting of convolution schemes.
In view of (2.11), the ind-scheme ConvT is discrete, and the connected components
of both ConvT and ConvB are in bijection with X∗(T )I × X∗(T )I . However, we
will use a labeling of these components that is not compatible with (2.11): given
λ, µ ∈ X∗(T )I , we let

Sλ ×̃ Sµ ⊂ ConvB

be the connected component that identifies under (2.11) with Sλ × Sµ+λ ⊂ GrB ×
GrB. This labeling has the advantage that it makes the statement of the following
lemma (which follows from the same considerations as for Lemma 3.7) cleaner.

Lemma 3.8. If µ, µ′ ∈ X∗(T )I and λ, λ′ ∈ X∗(T )+
I , the scheme

(Sµ ×̃ Sµ′) ∩ Conv
≤(λ,λ′)
G

is nonempty if and only if the only elements ν ∈ (W0 · µ) ∩ X∗(T )+
I and ν′ ∈

(W0 · µ′) ∩ X∗(T )+
I satisfy ν ≤ λ and ν′ ≤ λ′. In this case, this scheme is affine

and equidimensional of dimension 〈µ+ µ′ + λ+ λ′, ρ〉.

4. Sheaves on the Hecke stack

4.1. Constructible sheaves on the affine Grassmannian and the Hecke
stack. From now on we fix a prime number ` invertible in F, and a finite extension
K of Q`. The ring of integers of K will be denoted O, and the residue field of O will
be denoted k. We will use the notation Λ to denote one of the rings K, O, k, when
the choice does not matter. Below we will use the bounded constructible categories
of étale Λ-sheaves on Artin stacks of finite type; see §B.1 for a brief review of the
relevant ingredients, and for references on the construction.

Recall the notation of §2.6. For any i ≥ 0 we have the algebraic stack of finite
type [L+

niG\Xi]ét over F, and we can consider the bounded constructible derived
category

Db
c ([L+

niG\Xi]ét,Λ).

For any n ≥ ni, as in [FS21, Proposition VI.1.10], the quotient of the surjective
morphism L+

nG → L+
niG is an extension of copies of the additive group Ga,F, so that

by standard arguments the pullback functor

(4.1) Db
c ([L+

niG\Xi]ét,Λ)→ Db
c ([L+

nG\Xi]ét,Λ)

is an equivalence of categories. We can therefore set

Db
c ([L+G\Xi]ét,Λ) := lim

n≥ni
Db

c ([L+
niG\Xi]ét,Λ),

this limit being stationary. If i ≤ j we have an obvious pushforward functor
Db

c ([L+G\Xi]ét,Λ)→ Db
c ([L+G\Xj ]ét,Λ), and we can therefore set

Db
c (HkG ,Λ) := colimiD

b
c ([L+G\Xi]ét,Λ).

Standard arguments show that this category does not depend (up to equivalence)
on the choice of presentation GrG = colimi≥0Xi as in §2.6.

Of course, in this construction one can forget the L+G-action, and consider the
category

Db
c (GrG ,Λ) := colimiD

b
c (Xi,Λ).
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The quotient morphism h : GrG → HkG induces a pullback (or “forgetful”) functor

(4.2) h∗ : Db
c (HkG ,Λ)→ Db

c (GrG ,Λ).

For any i ≥ 0 one can consider the perverse t-structure on Db
c (Xi,Λ). These

t-structures “glue” to define a (bounded) t-structure on Db
c (GrG ,Λ), which once

again does not depend on the choice of presentation GrG = colimi≥0Xi, and which
will be called the perverse t-structure. Its heart will be denoted Perv(GrG ,Λ).

If i ≥ 0 and n ≥ ni, one can also consider the perverse t-structure on the category
Db

c ([L+
nG\Xi]ét,Λ). This t-structure does depend on the choice of n; to remedy this

we introduce a shift in this definition, so that the pullback functor

Db
c ([L+

nG\Xi]ét,Λ)→ Db
c (Xi,Λ)

becomes t-exact. With this normalization, for any n ≥ ni the equivalence (4.1)
is t-exact, so that we obtain an induced t-structure on Db

c ([L+G\Xi]ét,Λ). If
j ≥ i the pushforward functor Db

c ([L+G\Xi]ét,Λ)→ Db
c ([L+G\Xj ]ét,Λ) is t-exact,

so that once again these t-structures “glue” to define a (bounded) t-structure on
Db

c (HkG ,Λ), which is called the perverse t-structure, and whose heart will be de-
noted Perv(HkG ,Λ). By construction of the perverse t-structure for stacks and our
choice of normalization the functor (4.2) is t-exact; in fact it “detects perversity” in
the sense that for F ∈ Db

c (HkG ,Λ) the complex F is concentrated in nonpositive
perverse degrees, resp. concentrated in nonnegative perverse degrees, resp. perverse,
if and only if so is h∗(F ).

The constructions in §B.1.4 provide canonical “extension of scalars” functors

(4.3) k
L
⊗O (−) : Db

c (HkG ,O)→ Db
c (HkG ,k),

K⊗O (−) : Db
c (HkG ,O)→ Db

c (HkG ,K),

and a canonical “restriction of scalars” functor

(4.4) Db
c (HkG ,k)→ Db

c (HkG ,O)

which is right adjoint to k ⊗LO (−). (This functor will usually be omitted from
notation.) The right-hand functor in (4.3) and the functor in (4.4) are t-exact for
the perverse t-structures, hence induce exact functors

K⊗O (−) : Perv(HkG ,O)→ Perv(HkG ,K)

and
Perv(HkG ,k)→ Perv(HkG ,O).

On the other hand the left-hand functor in (4.3) is right t-exact; we therefore obtain
a right exact functor

pH 0(k
L
⊗O (−)) : Perv(HkG ,O)→ Perv(HkG ,k).

Similar comments apply for categories of sheaves on GrG , or for locally closed
subschemes, or for the various stacks we have already considered, and we will use
similar notation in these cases.

For any λ ∈ X∗(T )+
I , we can consider the perverse sheaves

J!(λ,Λ) := pH 0(jλ! ΛGrλG
[〈λ, 2ρ〉]), J∗(λ,Λ) := pH 0(jλ∗ΛGrλG

[〈λ, 2ρ〉])

in Perv(HkG ,Λ), where we use the notation of (2.8). By adjunction there exists a
canonical morphism

J!(λ,Λ)→J∗(λ,Λ)
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whose image is denoted J!∗(λ,Λ). In case Λ ∈ {k,K} each J!∗(λ,Λ) is simple,
and the assignment λ 7→J!∗(λ,Λ) induces a bijection between X∗(T )+

I and the set
of isomorphism classes of simple objects in Perv(HkG ,Λ); see e.g. [LO09, §8].

4.2. Convolution. Recall now the ind-scheme ConvG defined in §2.5, and the stack
HkConvG introduced in §2.6. Considerations similar to those of §4.1 allow to define
the triangulated categories

Db
c (ConvG ,Λ) and Db

c (HkConvG ,Λ),

and the pullback functor

(4.5) h̃∗ : Db
c (HkConvG ,Λ)→ Db

c (ConvG ,Λ).

One can also endow these categories with perverse t-structures, in such a way that
the functor (4.5) is t-exact.

Recall the maps
HkG ×HkG

p←− HkConvG
m−→ HkG

from §2.6. We can now define the convolution bifunctor

? : Db
c (HkG ,Λ)×Db

c (HkG ,Λ)→ Db
c (HkG ,Λ)

by setting

F ? G := m∗p
∗(F

L

�Λ G ).

Our goal in this subsection is to show that this bifunctor is right t-exact (on both
sides) for the perverse t-structure.

The morphism m fits into a cartesian square

ConvG HkConvG

GrG HkG .

h̃

m m

h

For any λ, µ, ν ∈ X∗(T )+
I such that λ+ µ ≤ ν, the left-hand morphism m restricts

to a morphism
mν
λ,µ : Conv

≤(λ,µ)
G → Gr≤νG .

Recall also the notions of a stratified locally trivial morphism and a stratified semi-
small morphism from §B.2.

Proposition 4.1. For any λ, µ, ν ∈ X∗(T )+
I such that λ + µ ≤ ν, the morphism

mν
λ,µ is stratified locally trivial and stratified semismall with respect to the stratifi-

cations
|Conv

≤(λ,µ)
G | =

⊔
λ′≤λ
µ′≤µ

|Conv
(λ′,µ′)
G |, |Gr≤νG | =

⊔
ν′≤ν

|Grν
′

G |,

see (2.9) and (2.13).

Proof. Our morphism is proper, and stratified locally trivial by L+G-equivariance.
It remains to check the condition on dimensions of fibers, which we will obtain from
Lemma B.1. In the present setting, the first assumption of that lemma follows from
L+G-equivariance. For the second one we observe that, by definition of convolution,
for any λ′, µ′ ∈ X∗(T )+

I such that λ′ ≤ λ and µ′ ≤ µ we have

(mν
λ,µ)!IC (Conv

(λ′,µ′)
G ,K) ∼= J!∗(λ

′,K) ?J!∗(µ
′,K).
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Hence the fact that this complex is perverse follows from [Ric16, Theorem 5.11(i)]
(see also [Zhu15, Corollary 2.8] in the tamely ramified case). �

Remark 4.2. (1) The proofs of [Ric16, Theorem 5.11(i)] and [Zhu15, Corol-
lary 2.8] are incorrect as written, because of the problem mentioned in Re-
mark 2.7. However they can easily be fixed by adding a step of reduction
to adjoint groups.

(2) The proof of Proposition 4.1 given here is suggested (with some precau-
tions) in [Zhu15, Remark 2.9(i)] (see also Remark B.2 for comments on this
method). A different proof of Proposition 4.1 can be obtained by copying
the arguments of [MV07, Lemma 4.4] (see also [BR18, §1.6.3]) and using
the results of Section 3.

We can finally reach the goal of this subsection.

Corollary 4.3. The bifunctor ? is right t-exact, in the sense that if F and G
belong to pD≤0(HkG ,Λ), then so does F ? G .

Proof. The bifunctor (F ,G ) 7→ F �LΛ G is clearly right t-exact. On the other hand,
by standard arguments involving t-exactness of shifted pullback along a smooth
morphism the functor p∗ is t-exact, and the functorm∗ is t-exact by Proposition 4.1
(and the fact that h∗ “detects perversity,” see §4.1). The desired claim follows. �

It is a standard fact that the bifunctor ? defines a monoidal structure on the cat-
egory Db

c (HkG ,Λ). As a consequence of Corollary 4.3, we obtain that the bifunctor

?0 : Perv(HkG ,Λ)× Perv(HkG ,Λ)→ Perv(HkG ,Λ)

defined by
F ?0 G = pH 0(F ? G )

defines a monoidal structure on Perv(HkG ,Λ). It is clear that the “change of scalars”
functors considered in §4.1 on the categories Db

c (HkG ,Λ) commute with the bi-
functor ? in the obvious way; it follows that their counterparts on the categories
Perv(HkG ,Λ) admit canonical monoidal structures.

4.3. Constant term functors. Consider a parabolic subgroup P ⊂ G containing
A, and letM ⊂ P be its Levi factor containing A. Let P andM be their respective
scheme-theoretic closures in G, see §3.1. In §3.2 we have considered a diagram

(4.6) GrG
iP←− GrP

qP−−→ GrM.

These maps are equivariant for the action of L+M on the left, so we obtain an
analogous diagram of quotient stacks. (The morphisms will be denoted by the same
symbols.) Appending the obvious quotient map [L+M\GrG ]ét → [L+G\GrG ]ét on
the left, we obtain the following diagram:

(4.7) HkG
hM,G←−−− [L+M\GrG ]ét

iP←− [L+M\GrP ]ét
qP−−→ HkM.

We will use this diagram to define the constant term functor

CTP,G : Db
c (HkG ,Λ)→ Db

c (HkM,Λ)

as follows.
Recall from (2.5) that the set π0(GrM) of connected components of GrM is in

canonical bijection with (X∗(T )/Q∨M )I , where Q∨M ⊂ X∗(T ) is the coroot lattice of
(MF s , TF s). Recall also that we denote by ρ the half-sum of the positive roots of
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(GF s , TF s) with respect to BF s . We will similarly denote by ρM the half-sum of
the positive roots of (MF s , TF s) with respect to (M ∩ B)F s ; as for ρ, this element
is fixed by the action of I. The Z-linear map 〈−, 2ρ − 2ρM 〉 : X∗(T ) → Z vanishes
on Q∨M and is I-invariant, so it induces a Z-linear map

〈−, 2ρ− 2ρM 〉 : (X∗(T )/Q∨M )I → Z.

If X ⊂ GrM is the connected component corresponding to λ ∈ (X∗(T )/Q∨M )I , we
set corrM,G(X) = 〈λ, 2ρ− 2ρM 〉. This defines a function

corrM,G : π0(GrM)→ Z.

For F in Db
c (GrM,Λ) or Db

c (HkM,Λ), one can make sense of the expression

F [corrM,G]

as meaning F [corrM,G(X)] if F is supported on the connected component X, and
then extending to arbitrary F by additivity.

We now define the constant term functor by the formula

CTP,G(F ) = qP!i
∗
Ph
∗
M,G(F )[corrM,G].

The rest of this section is devoted to the proof of some basic properties of these
functors. All the proofs are similar to those of their classical counterparts for split
groups, see [MV07, FS21, BR18]; still, we will generally give (sketches of) the
arguments for completeness.

First of all, it is clear that the functor CTP,G commutes with the “change of
scalars” functors considered in §4.1 (for derived categories) in the obvious sense.

Next, we explain an alternative formula for CTP,G involving the opposite para-
bolic P− to P . Let P− be the scheme theoretic closure of P− in G. Then we can
consider the following counterpart of (4.7):

(4.8) HkG
hM,G←−−− [L+M\GrG ]ét

iP−←−− [L+M\GrP− ]ét
qP−−−−→ HkM.

Proposition 4.4. For any F in Db
c (HkG ,Λ) there is a natural isomorphism

(qP−)∗i
!
P−h

∗
M,G(F )[corrM,G]

∼−→ CTP,G(F ).

Proof. This is an application of Braden’s theory of hyperbolic localization [Bra03],
in the version explained in [Ric19]. Choose a cocharacter λ ∈ X∗(A) such that
P = Pλ (see Remark 3.1(1)), and then let Gm,F act on GrG via this cocharacter.
There is a natural transformation (qP−)∗ ◦ i!P− → qP! ◦ i∗P given by [Ric19, Con-
struction 2.2]. Since the pullback functor Db

c (HkM,Λ) → Db
c (GrM,Λ) does not

kill any nonzero object, one can check whether this morphism is an isomorphism
on any given object after forgetting the L+M-equivariance, i.e., working with the
diagram (4.6) rather than (4.7). According to [Ric19, Theorem 2.6], our map is
an isomorphism on any object in Db

c (GrG ,Λ) that is Gm-monodromic in the sense
of [Ric19, Definition 2.3]. But all objects in the image of Db

c (HkG ,Λ)→ Db
c (GrG ,Λ)

(or even of Db
c ([L+M\GrG ]ét,Λ) → Db

c (GrG ,Λ)) are Gm-monodromic, so we are
done. �

If P ⊂ P ′ are parabolic subgroups of G containing A then as in §3.3 the intersec-
tion P ∩M ′ is a parabolic subgroup of the reductive group M ′. We can therefore
consider the construction above for M ′, its special facet aM ′ (see §3.1), and the
parabolic subgroup P ∩M ′, and obtain the functor CTP∩M′,M′ .
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Lemma 4.5. Let P ⊂ P ′ be parabolic subgroups of G containing A. There exists
a canonical isomorphism of functors

CTP∩M′,M′ ◦ CTP′,G
∼−→ CTP,G : Db

c (HkG ,Λ)→ Db
c (HkM,Λ).

Proof. This follows from the base change theorem, in view of Lemma 3.6(3). �

Proposition 4.6. For any parabolic subgroup P ⊂ G containing A, the functor

CTP,G : Db
c (HkG ,Λ)→ Db

c (HkM,Λ)

is t-exact and conservative.

Proof. Lemma 4.5 reduces the proof of the proposition to the case where P is con-
jugate to B, which clearly reduces to the case P = B. Since CTB,G is a triangulated
functor, to prove conservativity it suffices to prove that this functor does not kill
any nonzero object. Let F ∈ Db

c (HkG ,Λ) be nonzero, and let λ ∈ X∗(T )+
I be

such that GrλG is open in the support of F . Then the restriction of F to GrλG is
nonzero, and if µ is the unique Wa-conjugate of λ which belongs to −X∗(T )+

I we
have |Sµ ∩ GrλG | = {tµ} by the proof of [AGLR22, Lemma 5.3]. It follows that
CTB,G(F ) is nonzero on the component of GrT corresponding to µ, which finishes
the proof of conservativity.

For t-exactness let us first consider the case Λ ∈ {k,K}. In this case, the
subcategory pD≤0(HkG ,Λ) is generated under extensions by the objects of the form
jλ! Λ[〈λ, 2ρ〉]. Now, by the base change theorem, for any µ ∈ X∗(T )+

I we have(
CTB,G(jλ! Λ[〈λ, 2ρ〉])

)
tµ
∼= RΓc(GrλG ∩ Sµ; Λ)[〈λ+ µ, 2ρ〉].

By Lemma 3.7, GrλG ∩ Sµ has dimension 〈λ + µ, ρ〉 when it is nonempty; hence
RΓc(GrλG ∩Sµ; Λ) is concentrated in degrees at most 〈λ+µ, 2ρ〉, which implies that
CTB,G(jλ! Λ[〈λ, 2ρ〉]) is indeed concentrated in nonpositive degrees. This proves that
CTB,G is right t-exact. Left t-exactness follows using Verdier duality, Proposition 4.4
and Remark 3.1(2).

Finally we consider the case Λ = O. Here also pD≤0(HkG ,O) is generated
under extensions by the objects of the form jλ! O[〈λ, 2ρ〉], so that the same proof
as above shows that CTB,G is right t-exact. On the other hand, pD≥0(HkG ,O) is
generated under extensions by the objects of the form jλ∗O[〈λ, 2ρ〉] or jλ∗ k[〈λ, 2ρ〉]
for λ ∈ X∗(T )+

I . Now CTB,G(jλ∗ k[〈λ, 2ρ〉]) is concentrated in nonnegative degrees
by the case of k treated above, and so is

k
L
⊗O CTB,G(jλ∗O[〈λ, 2ρ〉]) ∼= CTB,G(jλ∗ k[〈λ, 2ρ〉]).

By standard arguments this implies that CTB,G(jλ∗O[〈λ, 2ρ〉]) is concentrated in
nonnegative degrees, and finishes the proof. �

Remark 4.7. Concretely, what t-exactness of the functor CTB,G means is that for
F ∈ Perv(HkG ,Λ), i ∈ Z and µ ∈ X∗(T )I we have

Hic(Sµ,F ) = 0 unless i = 〈µ, 2ρ〉.

Similarly, by Proposition 4.4, we have

HiTµ(GrG ,F ) = 0 unless i = 〈µ, 2ρ〉,

where H•Tµ(GrG ,−) denotes cohomology with support in Tµ.
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Proposition 4.6 implies that CTP,G restricts to an exact functor

Perv(HkG ,Λ)→ Perv(HkM,Λ),

which will be denoted similarly. These functors commute with the “change of
scalars” functors for categories of perverse sheaves considered in §4.1.

4.4. Compatibility with total cohomology. Recall the pullback functor h∗
from (4.2). We now define the functor

FG : Db
c (HkG ,Λ)→ modΛ

(where modΛ is the category of finitely generated Λ-modules) by

FG(F ) :=
⊕
n∈Z

Hn(GrG , h
∗F ).

(We ignore the Z-grading on the right-hand side.) For any parabolic subgroup
P ⊂ G containing A, with Levi factor containing A denoted M , we can consider
the analogous functor FM : Db

c (HkM,Λ)→ modΛ.

Proposition 4.8. For any P as above, there exists a canonical isomorphism

FG ∼= FM ◦ CTP,G
of functors from Perv(HkG ,Λ) to modΛ.

Proof. Lemma 4.5 reduces the proof to the case P = B. In this case GrT is discrete
(see §3.4), and for F in Perv(HkG ,Λ) we have

FT ◦ CTB,G(F ) =
⊕

λ∈X∗(T )+
I

H•c(Sλ,F
′
|Sλ)

where F ′ := h∗F . By Remark 4.7 we moreover have that

(4.9) Hnc (Sλ,F
′
|Sλ) = 0 unless n = 〈λ, 2ρ〉.

What we have to construct is therefore a canonical identification

(4.10) FG(F ) =
⊕

λ∈X∗(T )+
I

H〈λ,2ρ〉c (Sλ,F
′
|Sλ).

Decomposing F as a direct sum of its restrictions to each connected component
of GrG , we can assume that it is supported on one such component X. Choose a
presentation X = colimiXi by L+G-stable projective k-schemes, and some index i
such that F is supported on Xi. Recall the decomposition

|Xi| =
⊔
λ∈Z

|Sλ ×GrG Xi|

where Z is the finite subset of X∗(T )+
I consisting of the elements λ such that

Sλ ×GrG Xi 6= ∅; see in particular (3.17). The parity of the integers 〈λ, 2ρ〉 is
constant on this set since Xi is contained in a connected component of GrG ; to fix
notation we will assume that they are all even. For n ∈ Z we then set

Xn
i =

⋃
λ∈Z

〈λ,2ρ〉≤2n

Sλ ×GrG Xi
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where Sλ ×GrG Xi is the scheme-theoretic closure of Sλ ×GrG Xi. Then for some
integers n1 < n2 we have a finite filtration

∅ = Xn1
i ⊂ X

n1+1
i ⊂ · · · ⊂ Xn2−1

i ⊂ Xn2
i = Xi

by closed subschemes, and by (3.16) we have

Xn
i rXn−1

i =
⊔
λ∈Z

〈λ,2ρ〉=2n

Sλ ×GrG Xi

for any n ∈ {n1 + 1, . . . , n2}. For n ∈ {n1, . . . , n2}, resp. n ∈ {n1 + 1, . . . , n2}, we
will denote by

a≤n : Xn
i → Xi, resp. an : Xn

i rXn−1
i → Xi

the immersions. Then for any n ∈ {n1+1, . . . , n2} we have a canonical distinguished
triangle

(an)!a
∗
nF
′ → (a≤n)!a

∗
≤nF

′ → (a≤n−1)!a
∗
≤n−1F

′ [1]−→ .

Using (4.9) and parity arguments one proves by induction on n that we have canon-
ical isomorphisms

Hq(Xn
i ,F

′
|Xni

) =


⊕

λ∈Z
〈λ,2ρ〉=q

Hqc(Sλ,F ′|Sλ) if q is even and q ≤ 2n;

0 otherwise.

Taking n = n2 we deduce (4.10), which finishes the proof. �

Remark 4.9. (1) As in the usual geometric Satake context (see [BR18, The-
orem 1.10.4]), Proposition 4.8 (in case P = B) implies that the functor
FG : Perv(HkG ,Λ)→ modΛ is exact.

(2) Recall the “change of scalars” functors from §4.1. It is clear that for F in
Perv(HkG ,O) we have a canonical isomorphism

K⊗O FG(F ) ∼= FG(K⊗O F ).

On the other hand, there exists a canonical morphism

(4.11) k⊗O FG(F )→ FG(pH 0(k⊗O F )).

It is clear that the analogous morphism for the category Perv(HkT ,O) is
an isomorphism. Using Proposition 4.8 we deduce that (4.11) is an isomor-
phism.

The proof of Proposition 4.8 depends crucially on the fact that we are working
with perverse sheaves; one cannot expect it to hold for general non-perverse objects
in Db

c (HkG ,Λ). Nevertheless, the following statement shows that Proposition 4.8
does generalize to direct sums of shifts of perverse sheaves.

Corollary 4.10. Let M ∈ Db
c (pt,Λ), and assume that Hi(M) = 0 for i odd. For

F ∈ Perv(HkG ,Λ), there is a natural isomorphism

FG(F
L
⊗Λ M) ∼= FM(CTP,G(F

L
⊗Λ M))

Proof. For brevity, let F ′ = h∗F . It is enough to prove the claim in the case where
F is supported on a single connected component of GrG . In this case, by (the proof
of) Proposition 4.8, Hi(GrG ,F ′) can be nonzero only for i of a single parity. To fix
notation, we assume that Hi(GrG ,F ′) 6= 0 only for i even.
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By an appropriate version of the universal coefficient theorem, for any n ∈ Z
there is a natural short exact sequence

0→
⊕
i+j=n

Hi(GrG ,F
′)⊗Λ Hj(M)→ Hn(GrG ,F

′ L⊗Λ M)

→
⊕

i+j=n+1

TorΛ
1 (Hi(GrG ,F

′),Hj(M))→ 0.

Our assumptions imply that the first term vanishes when n is odd, and the last
term vanishes when n is even. We deduce that

Hn(GrG ,F
′ L⊗Λ M) ∼=

{⊕
i+j=n H

i(GrG ,F ′)⊗Λ Hj(M) if n is even,⊕
i+j=n+1 TorΛ

1 (Hi(GrG ,F ′),Hj(M)) if n is odd,

and hence that there is a natural isomorphism

(4.12) FG(F
L
⊗Λ M) ∼= (FG(F )⊗Λ H•(M))⊕ TorΛ

1 (FG(F ),H•(M)).

Applying this isomorphism with the group G replaced byM and with F replaced
by CTP,G(F ), we obtain an isomorphism

(4.13) FM(CTP,G(F
L
⊗Λ M)) ∼= FM(CTP,G(F )

L
⊗Λ M)

∼= (FM(CTP,G(F ))⊗Λ H•(M))⊕ TorΛ
1 (FM(CTP,G(F )),H•(M)).

By Proposition 4.8, the right-hand sides of (4.12) and (4.13) are naturally isomor-
phic, so the left-hand sides are as well. �

4.5. Constant term functors for convolution schemes. Let P ⊂ G be a par-
abolic subgroup containing A, and let M ⊂ P be its Levi factor containing A. Let
P and M be the scheme-theoretic closures of P and M , respectively, in G. Then
we have a diagram

ConvG
ı̃P←− ConvP

q̃P−−→ ConvM

similar to (4.6), along with the companion diagram

HkConvG
h̃M,G←−−− [L+M\ConvG ]ét

ı̃P←− [L+M\ConvP ]ét
q̃P−−→ HkConvM.

As in §3.5 (where we considered the case P = B) the connected components of
ConvM (and hence also those of ConvP) are in bijection with (X∗(T )/Q∨M )I ×
(X∗(T )/Q∨M )I . (This parametrization differs from that obtained via the identifi-
cation with GrM × GrM from (2.11) by the map (λ, µ) 7→ (λ, λ + µ).) Define a
function

c̃orrM,G : π0(ConvM)→ Z
as follows: if X ⊂ ConvM is the connected component corresponding to (λ, µ) ∈
(X∗(T )/Q∨M )I × (X∗(T )/Q∨M )I , then

c̃orrM,G(X) = 〈λ+ µ, 2ρ− 2ρM 〉.
Define the convolution constant term functor

C̃TP,G : Db
c (HkConvG ,Λ)→ Db

c (HkConvM,Λ)

by a recipe similar to that used for CTP,G : specifically, we set

C̃TP,G = q̃P! ı̃
∗
P h̃
∗
M,G(F )[c̃orrM,G].
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Using the opposite parabolic P− and its scheme-theoretic closure P−, we have
the following counterpart of (4.8):

HkConvG
h̃M,G←−−− [L+M\ConvG ]ét

ı̃P−←−− [L+M\ConvP− ]ét
q̃P−−−−→ HkConvM.

The proofs of the next two statements are essentially identical to those of Propo-
sition 4.4 and Lemma 4.5, and we omit them.

Proposition 4.11. For any F in Db
c (HkConvG ,Λ) there is a natural isomorphism

(q̃P−)∗ ı̃
!
P− h̃

∗
M,G(F )[c̃orrM,G]

∼−→ C̃TP,G(F ).

Lemma 4.12. Let P ⊂ P ′ be parabolic subgroups of G containing A, and let
M ⊂ M ′ be their respective Levi factors containing A. There exists a canonical
isomorphism of functors

C̃TP∩M′,M′ ◦ C̃TP′,G
∼−→ C̃TP,G : Db

c (HkConvG ,Λ)→ Db
c (HkConvM,Λ).

For the next statement we need to restrict the domain of C̃TP,G as follows: define

Db
c (ConvG ,Λ)sph ⊂ Db

c (ConvG ,Λ)

to be the full subcategory consisting of objects that are constructible with respect
to the stratification

(4.14) |ConvG | =
⊔

λ,µ∈X∗(T )+
I

|Conv
(λ,µ)
G |.

Similarly, define
Db

c (HkConvG ,Λ)sph ⊂ Db
c (HkConvG ,Λ)

to be the full subcategory consisting of objects whose image in Db
c (ConvG ,Λ) lies

in the subcategory Db
c (ConvG ,Λ)sph. The triangulated categories Db

c (ConvG ,Λ)sph

and Db
c (HkConvG ,Λ)sph both inherit a perverse t-structure; their hearts are de-

noted by
Perv(ConvG ,Λ)sph and Perv(HkConvG ,Λ)sph,

respectively.

Proposition 4.13. The functor

C̃TB,G : Db
c (HkConvG ,Λ)sph → Db

c (HkConvT ,Λ)

is t-exact and conservative.

Proof. The proof is essentially identical to that of Proposition 4.6, replacing the
reference to Lemma 3.7 by a reference to Lemma 3.8. �

In concrete terms, Proposition 4.13 says that for F ∈ Perv(HkConvG ,Λ)sph,
i ∈ Z and λ, µ ∈ X∗(T )I we have

(4.15) Hic(Sλ ×̃ Sµ, h̃
∗F ) = 0 unless i = 〈λ+ µ, 2ρ〉,

where h̃ : ConvG → HkConvG is the quotient map, see §2.6.

Remark 4.14. It is likely that Proposition 4.13 holds for any C̃TP,G , not just the
special case P = B. In fact, the general case would follow from Lemma 4.12 if we
also had the following claim:

For any F ∈ Db
c (HkConvG ,Λ)sph, the object C̃TP,G(F ) lies in

Db
c (HkConvM,Λ)sph.
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This claim is probably true, and not difficult to prove, but as we will not need it
in the sequel we do not pursue it here.

In the next statement, we denote by pr1,G and pr1,T the two versions of the “first
projection” map

HkConvG → HkG and HkConvT → HkT ,

see §2.5–2.6.

Proposition 4.15. For F ∈ Perv(HkConvG ,Λ)sph, there is a natural isomorphism

FT (CTB,G(pr1,G! F )) ∼= FT (pr1,T ! C̃TB,G(F )).

Proof. The proof is similar in spirit to that of Proposition 4.8. We may assume
without loss of generality that F is supported on a single connected component X
of ConvG . As in that proof, we have

FT (CTB,G(pr1,G! F )) =
⊕

λ∈X∗(T )+
I

H•c(Sλ, (h
∗ pr1,G! F )|Sλ)

=
⊕

λ∈X∗(T )+
I

H•c(pr−1
1,G(Sλ),F ′| pr−1

1,G(Sλ)
) =

⊕
λ∈X∗(T )+

I

H•c(Sλ ×̃GrG ,F
′
|Sλ×̃GrG

)

where F ′ := h̃∗F .
We now fix λ ∈ X∗(T )+

I . The subset Sλ ×̃GrG ⊂ ConvG is a union of subsets of
the form Sλ ×̃Sµ. Moreover, the parity of 〈λ+µ, 2ρ〉 is constant among the subsets
of this form that are contained in X; to fix notation we assume that these numbers
are even.

Consider the restriction F ′|Sλ×̃GrG
of F ′ to Sλ ×̃ GrG . Because F ′ lies in

Perv(ConvG ,Λ)sph, this object is supported on a subscheme of the form Sλ ×̃ X ′,
where X ′ ⊂ GrG is some L+G-stable projective F-scheme contained in a single com-
ponent of GrG . We set Y = Sλ ×̃X ′. We also let Z be the finite subset of X∗(T )+

I

consisting of the elements µ ∈ X∗(T )I such that that Sµ ×GrG X
′ 6= ∅.

For n ∈ Z we set

Y n =
⋃
µ∈Z

〈λ+µ,2ρ〉≤2n

Sλ ×̃ (Sµ ×GrG X
′).

Then for some integers n1 < n2 we have a finite filtration

∅ = Y n1 ⊂ Y n2 ⊂ · · · ⊂ Y n2−1 ⊂ Y n2 = Y

by closed subschemes, as well as a decomposition

Y n r Y n−1 =
⊔
µ∈Z

〈λ+µ,2ρ〉=2n

Sλ ×̃ (Sµ ×GrG X
′).

Let a≤n : Y n → Y and an : Y n r Y n−1 → Y be the immersions, so that for n ∈
{n1 + 1, . . . , n2} we have a distinguished triangle

(an)!a
∗
nF
′ → (a≤n)!a

∗
≤nF

′ → (a≤n−1)!a
∗
≤n−1F

′ [1]−→ .
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Using (4.15) and parity arguments one proves by induction on n that we have
canonical isomorphisms

Hq(Y n,F ′|Y n) =


⊕

µ∈Zλ
〈λ+µ,2ρ〉=q

Hq(Sλ ×̃ Sµ,F ′|Sλ×̃Sµ
) if q is even and q ≤ 2n;

0 otherwise.

Taking n = n2 we deduce an isomorphism

H•c(Sλ ×̃GrG ,F
′
|Sλ×̃GrG

) =
⊕

µ∈X∗(T )+
I

H〈λ+µ,2ρ〉
c (Sλ ×̃ Sµ,F

′
|Sλ×̃Sµ

).

Summing the previous isomorphisms over λ we deduce a natural isomorphism

FT (CTB,G(pr1,G! F )) =
⊕

λ,µ∈X∗(T )+
I

H〈λ+µ,2ρ〉
c (Sλ ×̃ Sµ,F

′
|Sλ×̃Sµ

).

The right-hand side identifies with FT (pr1,T ! C̃TB,G(F )), so we are done. �

Corollary 4.16. Let F ,G ∈ Perv(HkG ,Λ), and let Y ⊂ ConvG be a locally closed
sub-ind-scheme that is a union of subsets of the form Sλ ×̃ Sµ. Then there is a
canonical isomorphism

H•c
(
Y, (h̃∗p∗(F

L

�Λ G ))|Y
) ∼= ⊕

λ,µ∈X∗(T )+
I

Sλ×̃Sµ⊂Y

H〈λ+µ,2ρ〉
c

(
Sλ ×̃ Sµ, (h̃

∗p∗(F
L

�Λ G ))|Sλ×̃Sµ

)
.

Proof. For brevity, set F ′ = h∗F and G ′ = h∗G . It is sufficient to treat the case
where G ′ is supported on a single connected component of GrG , and we assume this
as well. Let us first consider the special case where Y = ConvG . By proper base
change using the cartesian square (2.17), we have

pr1,G! p
∗(F

L

�Λ G ) ∼= F
L
⊗Λ RΓ(GrG ,G

′).

Since G ′ is supported on a single connected component, as in the proof of Corol-
lary 4.10, the nonzero cohomology groups Hi(GrG ,G ′) all have i of the same parity.
Then, by Corollary 4.10, we obtain that

(4.16) FG
(
pr1,G! p

∗(F
L

�Λ G )
) ∼= FT

(
CTB,G(pr1,G! p

∗(F
L

�Λ G ))
)
.

Combining this with Proposition 4.15, we obtain

(4.17) H•c(ConvG , h̃
∗p∗(F

L
�Λ G )) = H•c(GrG , h

∗ pr1,G! p
∗(F

L
�Λ G ))

∼= FT (CTB,G(pr1,G! p
∗(F

L

�Λ G )))

∼=
⊕

λ,µ∈X∗(T )+
I

H〈λ+µ,2ρ〉
c (Sλ ×̃ Sµ, h̃

∗p∗(F
L

�Λ G )|Sλ×̃Sµ
),

which establishes the desired identification in this case.
Here is another interpretation of this equality. For λ, µ ∈ X∗(T )+

I , let S6≥(λ,µ) ⊂
ConvG be the closed subset defined by

S6≥(λ,µ) =
⋃

λ′,µ′∈X∗(T )+
I

λ′ 6≥ λ or λ′ + µ′ 6≥ λ+ µ

Sλ′ ×̃ Sµ′ .
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This is a closed subset of ConvG . There is a filtration F•,• of the Λ-module

H•c(ConvG , h̃
∗p∗(F

L
�Λ G ))

indexed by X∗(T )+
I × X∗(T )+

I , given by

Fλ,µ := ker(H•c(ConvG , h̃
∗p∗(F

L

�Λ G ))→ H•c(S6≥(λ,µ), h̃
∗p∗(F

L

�Λ G )|S6≥(λ,µ)
)).

Then (4.17) says that this filtration admits a canonical splitting.
We now return to the setting of a general Y as in the statement of the corollary.

Let Z be the set of pairs (λ, µ) ∈ X∗(T )+
I ×X∗(T )+

I such that Sλ ×̃Sµ ⊂ Y , and let

Z− =

{
(λ, µ) ∈ X∗(T )+

I × X∗(T )+
I

∣∣∣ there exists (λ′, µ′) ∈ Z with
λ ≥ λ′ and λ+ µ ≥ λ′ + µ′

}
.

The fact that Y is locally closed implies that Z− r Z is an upper closed set with
respect to the partial order on X∗(T )+

I × X∗(T )+
I . As a consequence, the module

H•c(Y, h̃∗p∗(F �LΛG )|Y ) can be identified with a subquotient of the filtration defined
above: namely,

H•c(Y, h̃∗p∗(F
L

�Λ G )|Y ) =
∑

(λ,µ)∈Z−
Fλ,µ

/ ∑
(λ,µ)∈Z−rZ

Fλ,µ.

Since the filtration is canonically split, the result follows. �

Proposition 4.17. For F ,G ∈ Perv(HkG ,Λ), there is a natural isomorphism

CTB,G(F ?0 G ) ∼= mT !C̃TB,G(p∗(pH 0(F
L

�Λ G ))).

Proof. The statement is a natural isomorphism in Perv(HkT ,Λ). Below, we will
prove a closely related statement: we will show that in Perv(GrT ,Λ), there is a
natural isomorphism

(4.18) h∗CTB,G(F ? G ) ∼= h∗mT !C̃TB,G(p∗(F
L
�Λ G )).

Let us explain how to deduce the proposition from (4.18). By t-exactness of the
various functors above (see Propositions 4.1, 4.6, and 4.13, and also the discussion
in §B.2), (4.18) implies that

h∗CTB,G(F ?0 G ) ∼= h∗mT !C̃TB,G(p∗(pH 0(F
L
�Λ G ))),

and this in turn implies the proposition because h∗ : Perv(HkT ,Λ)→ Perv(GrT ,Λ)
is fully faithful.

Let us prove (4.18). Since GrT is discrete, we may further reduce the prob-
lem to that of comparing stalks of these complexes at each point of GrT . Let
us fix an element ν ∈ X∗(T )I , and focus on the stalks (h∗CTB,G(F ? G ))tν and
(h∗mT !C̃TB,G(p∗(F �LΛ G )))tν .
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Note that m−1
G (Sν) is the union of all Sλ ×̃Sµ where λ+µ = ν. Therefore, using

Corollary 4.16, we have

(h∗CTB,G(F ? G ))tν ∼= H〈ν,2ρ〉c (Sν , (mG!p
∗(F

L
�Λ G ))|Sν )

∼= H〈ν,2ρ〉c (m−1
G (Sν), p∗(F

L
�Λ G )|m−1

G (Sν))

∼=
⊕

λ,µ∈X∗(T )+
I

λ+µ=ν

H〈ν,2ρ〉c (Sλ ×̃ Sµ, p
∗(F

L
�Λ G )|Sλ×̃Sµ

).

On the other hand, the stalk (h∗mT !C̃TB,G(p∗(F �LΛ G )))tν is given by

(h∗mT !C̃TB,G(p∗(F
L

�Λ G )))tν ∼=
⊕

λ+µ=ν

(h∗C̃TB,G(p∗(F
L

�Λ G )))[λ,µ]

∼=
⊕

λ+µ=ν

H〈λ+µ,2ρ〉
c (Sλ ×̃ Sµ, p

∗(F
L

�Λ G )|Sλ×̃Sµ
)

where [λ, µ] ∈ ConvT is the point corresponding to (λ, λ+ µ) under the identifica-
tions (2.11) (for T ) and (3.15). The result follows. �

Combining Proposition 4.17 with Proposition 4.8, we obtain the following im-
mediate consequence.

Proposition 4.18. For F ,G ∈ Perv(HkG ,Λ), there is a natural isomorphism

FG(F ?0 G ) ∼= FT (mT !C̃TB,G(p∗(pH 0(F
L

�Λ G )))).

Remark 4.19. The preceding proposition depends on Corollary 4.10, whose proof
makes crucial use of the fact that Λ has global dimension ≤ 1. In the analytic
setting mentioned in Remark 1.3, one may wish to consider coefficient rings of
global dimension > 1 (but still finite). To handle this situation, one can modify the
argument as follows:

• First, prove Corollary 4.10 under the additional assumption that the coho-
mology modules Hi(M) are flat over Λ.

• Then, prove Corollary 4.16, Proposition 4.17, and Proposition 4.18 under
the additional assumption that FG(G ) is flat over Λ.

• The results in Section 6 imply that every perverse sheaf admits a presenta-
tion P1 → P2 � G where FG(P1) and FG(P2) are flat over Λ. Because
the functors in the statement of Proposition 4.17 are right exact, one can
uniquely fill in the dotted arrow in the diagram below:

CTB,G(F ?0 P1) CTB,G(F ?0 P2) CTB,G(F ?0 G ) 0

mT !C̃TB,G(p∗pH 0(F �LΛ P1)) mT !C̃TB,G(p∗pH 0(F �LΛ P2)) mT !C̃TB,G(p∗pH 0(F �LΛ G )) 0

flat case of
Prop. 4.17

flat case of
Prop. 4.17

In this way, one can deduce Propositions 4.17 and 4.18 in general.
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5. Monoidality

5.1. Statement and strategy. The goal of this section is to equip the total co-
homology functor

FG : Perv(HkG ,Λ)→ modΛ

(see §4.4) with a monoidal structure, i.e., with a natural isomorphism

(5.1) φ : FG(F )⊗Λ FG(G )
∼−→ FG(F ?0 G )

satisfying appropriate associativity and identity equations. In the “classical” geo-
metric Satake context (see [MV07, BR18]) the monoidal structure on the fiber
functor is constructed using the Bĕılinson–Drinfeld Grassmannian and the inter-
pretation of convolution as fusion, see [MV07, §6] or [BR18, §1.8] for details. In
our present setting we have no analogue of the Bĕılinson–Drinfeld Grassmannian;
we therefore have to argue differently.

As a warm-up, we treat an easy special case: that in which G is replaced by T .

Lemma 5.1. For F ,G ∈ Perv(HkT ,Λ) there is a natural isomorphism

FT (F ?0 G ) ∼= FT (F )⊗Λ FT (G )

making FT : Perv(HkT ,Λ)→ modΛ into a monoidal functor.

Proof. Recall that the underlying topological spaces of GrT and ConvT are discrete,
associated with the sets X∗(T )I and X∗(T )I × X∗(T )I respectively; see in particu-
lar (3.15). Using the identifications (2.14) and (2.18), along with the commutative
diagram (2.19), we see that

FT (F ?0 G ) ∼= H0(GrT ,
pH 0(h∗m!p

∗(F
L

�Λ G )))

∼= H0(GrT ×GrT ,
pH 0((h∗F )

L

�Λ (h∗G ))).

Using again that GrT is discrete we see that the last expression is isomorphic to

H0(GrT , h
∗F )⊗Λ H0(GrT , h

∗G ) = FT (F )⊗Λ FT (G ),

as desired. �

In view of Lemma 5.1 and Proposition 4.8 (for P = B), to construct a monoidal
structure on FG it suffices to construct a monoidal structure on the functor

CTB,G : Perv(HkG ,Λ)→ Perv(HkT ,Λ)

with respect to the convolution product ?0. This is exactly what we do in the rest
of this section.

5.2. A Künneth lemma.

Lemma 5.2. Consider the diagram

[L+T \GrB]ét ×HkB

[L+T \ConvB]ét [L+T \GrB]ét ×GrB

HkConvT
(2.18)

= HkT ×GrT .

pB

q̃B

id×hB

qB×qB
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For F ∈ Db
c ([L+T \GrB]ét,Λ) and G ∈ Db

c (HkB,Λ), there is a natural isomorphism

q̃B!p
∗
B(F

L

�Λ G ) ∼= (qB!F )
L

�Λ (qB!h
∗
BG ).

Proof. It is enough to prove this when F and G are each supported on a single con-
nected component of GrB, say Sλ and Sµ, respectively for some λ, µ ∈ X∗(T )I . Note
that all maps in the diagram induce bijections on the sets of connected components.
Taking appropriate connected components, our diagram restricts to

[L+T \Sλ]ét × [L+B\Sµ]ét

[L+T \Sλ ×̃ Sµ]ét [L+T \Sλ]ét × Sµ

[L+T \pt]ét

pB

q̃B

id×hB

qB×qB

where pt is the point given by (tλ, tµ). By proper base change using the cartesian
square (2.17), we have pr1,B!(p

∗
B(F �LΛ G )) ∼= F ⊗LΛ RΓc(GrB, h

∗
BG ), and hence a

natural isomorphism

q̃B!p
∗
B(F

L

�Λ G ) ∼= (qB!F )
L

�Λ (qB!h
∗
BG ),

as desired. �

5.3. Constant term functors and external product. From Lemma 5.2 we will
deduce the following compatibility statement between the constant term functors
and the external product.

Corollary 5.3. For F ,G ∈ Db
c (HkG ,Λ) there is a natural isomorphism

(5.2) C̃TB,G
(
p∗G(F

L

�Λ G )
) ∼= p∗T

(
CTB,G(F )

L

�Λ CTB,G(G )
)
.

For F ,G ∈ Perv(HkG ,Λ), this induces a natural isomorphism

(5.3) C̃TB,G
(
p∗G

pH 0(F
L

�Λ G )
) ∼= p∗T

pH 0
(
CTB,G(F )

L

�Λ CTB,G(G )
)
.

Proof. Let w : HkB → HkG be the map induced by the inclusion B ⊂ G. Our
arguments will exploit the following diagram, in which the left and middle squares
commute:

HkG × HkG [L+T \GrG ]ét × HkG [L+T \GrB]ét × HkB [L+T \GrB]ét × GrB

HkConvG [L+T \ConvG ]ét [L+T \ConvB]ét HkConvT
(2.18)

= HkT × GrT .

hT ,G×id iB×w id×hB

qB×qBpG
h̃T ,G

pB

ı̃B

pB

q̃B

Using the commutativity and Lemma 5.2 we obtain isomorphisms

C̃TB,G(p∗G(F
L

�Λ G )) := q̃B! ı̃
∗
Bh̃
∗
T ,Gp

∗
G(F

L
�Λ G )

∼= q̃B!p
∗
B((i∗Bh

∗
T ,GF )

L

�Λ w
∗G ) ∼= (qB!i

∗
Bh
∗
T ,GF )

L

�Λ (qB!h
∗
Bw
∗G ).

Next we observe that

qB!i
∗
Bh
∗
T ,GF =: CTB,G(F ) and qB!h

∗
Bw
∗G ∼= h∗T CTB,G(G ).

Finally, under the isomorphism HkConvT
(2.18)

= HkT ×GrT the map pT corresponds
to id×hT , which allows us to convert the isomorphisms above into (5.2) (and thereby
to finish the proof).
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In view of Proposition 4.6, we obtain (5.3) by applying pH 0 to (5.2). �

5.4. End of the construction. We are now ready to exhibit a monoidal structure
on CTB,G . As explained in §5.1, from there one obtains a monoidal structure (5.1)
on the functor FG .

Proposition 5.4. For F ,G ∈ Perv(HkG ,Λ), there is a natural isomorphism

(5.4) CTB,G(F ?0 G ) ∼= CTB,G(F ) ?0 CTB,G(G ).

that makes CTB,G into a monoidal functor.

Proof. By Proposition 4.17 and Corollary 5.3, the following diagram commutes up
to natural isomorphism:

Perv(HkG ,Λ)× Perv(HkG ,Λ) Perv(HkT ,Λ)× Perv(HkT ,Λ)

Perv(HkConvG ,Λ)sph Perv(HkConvT ,Λ)sph

Perv(HkG ,Λ) Perv(HkT ,Λ)

CTB,G×CTB,G

p∗G
pH 0(−�LΛ−)

(−)?0(−)

Cor. 5.3 p∗T
pH 0(−�LΛ−)

(−)?0(−)

C̃TB,G

Prop. 4.17 mT !

CTB,G

(Note that Proposition 4.17 asserts the commutativity of a pentagon in this di-
agram, and not of the square that would be obtained by including the arrow
mG! : Perv(HkConvG ,Λ)sph → Perv(HkG ,Λ). For this reason, mG! is omitted from
the picture.) Considering the outer square of this diagram, we obtain the isomor-
phism (5.4). We leave it to the reader to check that (5.4) is compatible with the
associativity and identity constraints. �

Remark 5.5. By construction, the monoidal structure on FG is characterized by the
fact that it makes the following diagram commute:

FT (mT !
pH 0(C̃TB,G(p∗G(F �LΛ G )))) FT (CTB,G(F ) ?0 CTB,G(G ))

FT (CTB,G(F ))⊗Λ FT (CTB,G(G ))

FG(F ?0 G ) FG(F )⊗Λ FG(G ).

Prop. 4.18 o

Cor. 5.3
∼

Lem. 5.1o

Prop. 4.8o

∼
(5.1)

Remark 5.6. There is another construction of a monoidal structure on the constant
term functor which does not use the Bĕılinson–Drinfeld Grassmannian in [Yu22,
Proof of Proposition 4.4]. (The geometric setting considered in that reference is
different from ours, but shares similar formal properties.) Unfortunately, this proof
is based on the false claim that the filtrations on the total cohomology arising from
the semi-infinite orbits and their opposites are complementary to each other.4 This
seems to be a common misconception in the literature and appears in several places
including [MV07, Proof of Theorem 3.6], [Zhu17, Proof of Theorem 5.3.9(3)] and

4This problem was pointed out to the fourth named author by S. Lysenko several years ago.
It was also discussed during Scholze’s geometrization lectures in the winter term 2020/21 where
the third named author was present.
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[HR21, Proof of Theorem 3.16]. The proof of Proposition 5.4 replaces the false
argument with the direct computation in Corollary 4.16.

6. A bialgebra governing perverse sheaves

6.1. Statement. The main result of this section is the following Theorem 6.1,
whose proof will be finished in §6.7. Given a Λ-coalgebra C, we denote by comodC
its category of right comodules which are finitely generated over Λ. If C is a bial-
gebra, then the tensor product ⊗Λ equips this category with a monoidal structure.

Theorem 6.1. For Λ ∈ {K,O,k} there exists a canonical Λ-bialgebra BG(Λ) and
an equivalence of monoidal categories

SG :
(
Perv(HkG ,Λ), ?0

) ∼−→ (
comodBG(Λ),⊗Λ

)
.

Moreover, BG(O) is flat over O and there exist canonical isomorphisms of k- and
K-bialgebras

(6.1) k⊗O BG(O)
∼−→ BG(k), K⊗O BG(O)

∼−→ BG(K)

respectively, compatible with the change-of-scalars functors

pH 0(k
L
⊗O (−)) : Perv(HkG ,O)→ Perv(HkG ,k),

K⊗O (−) : Perv(HkG ,O)→ Perv(HkG ,K),

Perv(HkG ,k)→ Perv(HkG ,O)

in the natural way.

The proof of Theorem 6.1 is very similar to that of the corresponding claim in
the context of the “ordinary” geometric Satake equivalence; see [MV07, Section 11]
and [BR18, §1.13.1]. We will not repeat the proofs that can be copied from these
references.

6.2. Weight functors. Recall the functor

FG : Perv(HkG ,Λ)→ modΛ

considered in §4.4. We also have a similar functor

FT : Perv(HkT ,Λ)→ modΛ

for the group T . Since GrT is discrete with underlying set X∗(T )I (see §3.4), we
have a canonical identification

(6.2) Perv(HkT ,Λ) = mod
X∗(T )I
Λ

where the right-hand side denotes the category of finitely generated X∗(T )I -graded
Λ-modules. Via this identification, the functor FT sends an X∗(T )I -graded Λ-
modules to the underlying Λ-module.

Using (6.2), the functor CTB,G (see §4.3) can be seen as a functor

Perv(HkG ,Λ)→ mod
X∗(T )I
Λ .

If we denote, for any λ ∈ X∗(T )I , by FG,λ the composition of this functor with
the functor mod

X∗(T )I
Λ → modΛ sending an X∗(T )I -graded Λ-module to its λ-

component, then by Proposition 4.8 (for P = B) we have a canonical isomorphism
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of functors

(6.3) FG ∼=
⊕

λ∈X∗(T )I

FG,λ.

The functor FG,λ is called the weight functor associated with λ. Explicitly, for any
λ ∈ X∗(T )I and F ∈ Perv(HkG ,Λ) we have

FG,λ(F ) = H〈λ,2ρ〉c (Sλ, (h
∗F )|Sλ) ∼= H

〈λ,2ρ〉
Tλ

(h∗F ),

where the isomorphism is provided by Proposition 4.4 (again, for P = B).

6.3. Preliminaries on standard and costandard perverse sheaves. Recall,
for µ ∈ X∗(T )+

I , the objects J!(µ,Λ) and J∗(µ,Λ) considered in §4.1.

Lemma 6.2. In case Λ = K, the category Perv(HkG ,Λ) is semisimple. In particu-
lar, the natural morphism J!(µ,Λ)→J∗(µ,Λ) is an isomorphism.

Proof. Like in the setting of the ordinary geometric Satake equivalence (see [BR18,
§1.4]), the claim follows from the fact that the parity of the dimension of Schubert
varieties is constant on each connected component of GrG , see (2.5) and (2.10),
and that the simple objects in Perv(HkG ,Λ) are parity complexes in the sense
of [JMW14]. �

Lemma 6.3. (1) For µ ∈ X∗(T )+
I and ν ∈ X∗(T )I , the Λ-module

FG,ν(J!(µ,Λ)), resp. FG,ν(J∗(µ,Λ)),

is free with a canonical basis parametrized by the irreducible components of
GrµG ∩ Sν , resp. GrµG ∩ Tν .

(2) For any µ ∈ X∗(T )+
I there exist canonical isomorphisms

J!(µ,K) ∼= K
L
⊗O J!(µ,O), J∗(µ,K) ∼= K

L
⊗O J∗(µ,O),

J!(µ,k) ∼= k
L
⊗O J!(µ,O), J∗(µ,k) ∼= k

L
⊗O J∗(µ,O).

(3) In case Λ = O, for any µ ∈ X∗(T )+
I the canonical morphism

J!(µ,Λ)→J∗(µ,Λ)

is injective.

Proof. (1) The proof is the same as for [BR18, Proposition 1.11.1].
(2) The proof is the same as for [BR18, Proposition 1.11.3].
(3) By the same considerations as in [BR18, Lemma 1.11.5], the claim follows

from Lemma 6.2. �

6.4. Representability. Consider a closed subscheme Z ⊂ GrG whose underlying
topological subspace is a union of finitely many L+G-orbits. We can then consider
the quotient stack [L+G\Z]ét, and the corresponding full subcategory

Perv([L+G\Z]ét,Λ) ⊂ Perv(HkG ,Λ).

In fact, the action of L+G on Z factors through an action of L+
nG for some n ≥ 0,

and we then have

Perv([L+G\Z]ét,Λ) = Perv([L+
nG\Z]ét,Λ).

Fix some ν ∈ X∗(T )I such that Tν ∩ Z 6= ∅, and consider the immersion

iZ,ν : Tν ∩ Z → Z
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and the action and projection morphisms

aZ,ν , pZ,ν : L+
nG × Z → Z.

One checks as in [BR18, Proposition 1.12.1] that the complex

(6.4) (aZ,ν)!(pZ,ν)!(iZ,ν)!ΛTν∩Z [−〈ν, 2ρ〉]

is concentrated in nonpositive perverse degrees, and that if we set

PZ(ν,Λ) := pH 0((aZ,ν)!(pZ,ν)!(iZ,ν)!ΛTν∩Z [−〈ν, 2ρ〉]),

the perverse sheaf PZ(ν,Λ) is a projective object in Perv([L+G\Z]ét,Λ) which
represents the restriction of FG,ν to this subcategory. In particular, this object does
not depend on the choice of n.

Set
XZ = {ν ∈ X∗(T )I | Z ∩ Tν 6= ∅} =

⋃
λ∈X∗(T )+

I

|GrλG |⊂|Z|

W0 · λ,

where the equality follows from Lemma 3.7. (This set is clearly finite.) In view
of (6.3), setting

PZ(Λ) :=
⊕
ν∈XZ

PZ(ν,Λ)

one obtains a projective object in Perv([L+G\Z]ét,Λ) which represents the restric-
tion of FG to this subcategory. In fact, as in [BR18, §1.12.1], this object is a
projective generator of the category Perv([L+G\Z]ét,Λ).

We finish this subsection with the discussion of a property which will be used in
Appendix A. Consider a locally closed subscheme X ⊂ GrG whose underlying topo-
logical subspace is a union of finitely many L+G-orbits. Choose closed subschemes
Y ⊂ Z ⊂ GrG whose underlying topological subspace is a union of finitely many
L+G-orbits and such that X = Z r Y , and denote by j : X → Z the open embed-
ding. If ν ∈ XZ r XY (or, in other words, if tν ∈ |X|), the same considerations as
in [BR18, Remark 1.5.8(2)] show that for any G ∈ Perv([L+G\X]ét,Λ) we have

(6.5) HkX∩Tν (X,G ) = 0 unless k = 〈ν, 2ρ〉,

so that the functor

FXG,ν := H
〈ν,2ρ〉
X∩Tν

(X,−) : Perv([L+G\X]ét,Λ)→ modΛ

is exact (by consideration of an appropriate long exact sequence).

Lemma 6.4. The functor FXG,ν is represented by the perverse sheaf j∗PZ(ν,Λ).

Proof. For F ∈ Perv([L+G\X]ét,Λ), by adjunction we have

Hom(j∗PZ(ν,Λ),F ) ∼= Hom(PZ(ν,Λ), pH 0(j∗F )).

Since PZ(ν,Λ) represents FG,ν on Perv([L+G\Z]ét,Λ), the right-hand side identifies
with

FG,ν(pH 0(j∗F )) = H
〈ν,2ρ〉
Tν

(GrG ,
pH 0(j∗F )).

Now, by Remark 4.7 and standard considerations involving perverse truncation
triangles (as in [BR18, Lemma 1.10.7]), one sees that

H
〈ν,2ρ〉
Tν

(GrG ,
pH 0(j∗F )) = H

〈ν,2ρ〉
Tν

(GrG , j∗F ).
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By base change the right-hand side identifies with H
〈ν,2ρ〉
X∩Tν

(X,F ), which finishes
the proof. �

It follows from Lemma 6.4 and the comments preceding it that the perverse sheaf

PX(ν,Λ) = j∗PZ(ν,Λ)

does not depend on the choice of Y and Z, and is projective.
Consider now the projective object

PX(Λ) =
⊕
ν∈X
tν∈|X|

PX(ν,Λ) ∈ Perv([L+G\X]ét,Λ).

The same arguments as in the proof of Proposition 4.6 show that the functor
Hom(PX(Λ),−) does not kill any nonzero object; it follows that P is a projective
generator of the category Perv([L+G\X]ét,Λ).

6.5. Structure of projective objects. Let us now consider two L+G-stable closed
subschemes Y,Z ⊂ GrG whose underlying topological subspace is a union of finitely
many L+G-orbits and such that Y ⊂ Z. If we denote by i : Y → Z the closed
immersion, then as in [BR18, Proposition 1.12.2] one checks that there exists a
canonical isomorphism

PY (Λ) ∼= pH 0(i∗PZ(Λ)),

and that the morphism

PZ(Λ)→ pH 0(i∗i
∗PZ(Λ)) = i∗PY (Λ)

induced by adjunction is surjective.
Next, using Lemma 6.3 and the same arguments as for [BR18, Proposition 1.12.3],

one checks that, for any closed subscheme Z ⊂ GrG whose underlying topological
subspace is a union of finitely many L+G-orbits:

(1) the object PZ(Λ) admits a finite filtration with associated graded⊕
µ∈X∗(T )+

I

|GrµG |⊂|Z|

FG(J∗(µ,Λ))⊗Λ J!(µ,Λ);

(2) there exist canonical isomorphisms

PZ(K) ∼= K⊗O PZ(O), PZ(k) ∼= k
L
⊗O PZ(O);

(3) the O-module FG(PZ(O)) is free of finite rank, and there exist canonical
isomorphisms

FG(PZ(K)) ∼= K⊗O FG(PZ(O)), FG(PZ(k)) ∼= k⊗O FG(PZ(O)).

Let us note for later use the following consequence of (2).

Lemma 6.5. For any µ ∈ X∗(T )+
I such that |GrµG | ⊂ |Z| there exist canonical

isomorphisms

PZ(µ,K) ∼= K⊗O PZ(µ,O), PZ(µ,k) ∼= k
L
⊗O PZ(µ,O).
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Proof. The first isomorphism is clear from the construction of the objects PZ(µ,K)
and PZ(µ,O) and t-exactness of the functor K⊗O (−). For the second one, prop-
erty (2) above implies that k⊗LO PZ(µ,O) is a perverse sheaf. On the other hand,
since the complex (6.4) is concentrated in nonpositive perverse degrees, and since
its version over k is obtained from the version over O by application of the functor
k⊗LO (−), we have PZ(µ,k) ∼= pH 0(k⊗LOPZ(µ,O)). The desired claim follows. �

Remark 6.6. In case Λ is a field (i.e. if Λ = K or Λ = k), as in [BR18, Propo-
sition 1.12.4] one can check that for any L+G-stable closed subscheme Z ⊂ GrG
whose underlying topological subspace is a union of finitely many L+G-orbits the
category Perv([L+G\Z]ét,Λ) is a highest weight category with weight poset

{λ ∈ X∗(T )+
I | |GrλG | ⊂ |Z|}

and standard, resp. costandard, objects the objects J!(λ,Λ), resp. J∗(λ,Λ). (For
generalities on highest weight categories, see [Ric, §7].)

More generally, for any L+G-stable locally closed subscheme X ⊂ GrG whose
underlying topological subspace is a union of finitely many L+G-orbits the category
Perv([L+G\X]ét,Λ) is a highest weight category with weight poset

{λ ∈ X∗(T )+
I | |GrλG | ⊂ |X|}

and standard, resp. costandard, objects the objects J!(λ,Λ)|X , resp. J∗(λ,Λ)|X .
In fact, writing X = Z r Y with Y ⊂ Z ⊂ GrG as above, Perv([L+G\X]ét,Λ)
is the Serre quotient of the category Perv([L+G\Z]ét,Λ) by the Serre subcategory
Perv([L+G\Y ]ét,Λ), so that the claim follows from [Ric, Lemma 7.8].

6.6. Construction of BG(Λ). If Z is as in §6.4, we set

AZ(Λ) := EndPerv([L+G\Z]ét,Λ)(PZ(Λ))op.

Then, since PZ(Λ) represents the restriction of FG , we have

AZ(Λ) ∼= FG(PZ(Λ))

as Λ-modules, hence AZ(Λ) is free of finite rank over Λ by (3) in §6.5. Since
PZ(Λ) is a projective generator of Perv([L+G\Z]ét,Λ), by a variant of the Gabriel–
Popescu theorem (see e.g. [BR18, Proposition 1.13.1]) one sees that there exists an
equivalence of abelian categories

S′Z : Perv([L+G\Z]ét,Λ)
∼−→ modAZ(Λ)

(where the right-hand side is the category of finitely generated AZ(Λ)-modules)
whose composition with the forgetful functor modAZ(Λ) → modΛ is the restriction
of FG . If we set

BZ(Λ) := HomΛ(AZ(Λ),Λ),

we therefore obtain a Λ-coalgebra such that there exists a canonical equivalence of
abelian categories

SZ : Perv([L+G\Z]ét,Λ)
∼−→ comodBZ(Λ)

whose composition with the forgetful functor comodBZ(Λ) → modΛ is the restriction
of FG .
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In the setting of §6.5, if Y ⊂ Z the functor pH 0 ◦ i∗ induces a morphism
f ′Y,Z : AZ(Λ)→ AY (Λ) such that the diagram

Perv([L+G\Y ]ét,Λ) modAY (Λ)

Perv([L+G\Z]ét,Λ) modAZ(Λ)

SY

i∗

SZ

commutes, where the right-hand vertical arrow is the restriction-of-scalars func-
tor associated with f ′Y,Z . Passing to duals we deduce a morphism of coalgebras
fY,Z : BY (Λ)→ BZ(Λ) such that the diagram

Perv([L+G\Y ]ét,Λ) comodBY (Λ)

Perv([L+G\Z]ét,Λ) comodBZ(Λ)

SY

i∗

SZ

commutes, where the right-hand vertical arrow is the functor induced by fY,Z .
Finally we set

BG(Λ) = colimZ BZ(Λ)

where Z runs over the closed subschemes of GrG whose underlying topological
subspace is a finite union of L+G-orbits. Then BG(Λ) is a Λ-coalgebra, and since

Perv(HkG ,Λ) = colimZ Perv([L+G\Z]ét,Λ)

we obtain an equivalence of categories

SG : Perv(HkG ,Λ)
∼−→ comodBG(Λ)

whose composition with the forgetful functor comodBG(Λ) → modΛ is FG . Note that
in case Λ = O, BG(O) is flat over O, as a colimit of flat O-modules.

Property (3) in §6.5 ensures that there exist canonical isomorphisms

K⊗O BG(O)
∼−→ BG(K), k⊗O BG(O)

∼−→ BG(k)

such that the obvious diagrams involving the change-of-scalars functors commute.

6.7. Algebra structure. To conclude the proof of Theorem 6.1 we need to en-
dow BG(Λ) with an algebra structure such that SG is monoidal. Fix three closed
subschemes X,Y, Z ⊂ GrG whose underlying topological subspaces are unions of
finitely many L+G-orbits, and such that the restriction of the morphismm from §2.5
to X ×̃ Y factors through a morphism X ×̃ Y → Z. The tensor product of identity
morphisms provides a canonical element in

AX(Λ)⊗Λ AY (Λ) ∼= FG(PX(Λ))⊗Λ FG(PY (Λ))

∼= FG(PX(Λ) ?0 PY (Λ)) ∼= HomPerv(HkG ,Λ)(PZ(Λ),PX(Λ) ?0 PY (Λ))

(where the second isomorphism is provided by the monoidal structure on FG con-
structed in Section 5). Applying the functor FG we deduce a morphism AZ(Λ) →
AX(Λ)⊗Λ AY (Λ) and then, dualizing, a morphism

BX(Λ)⊗Λ BY (Λ)→ BZ(Λ).

Passing to colimits we finally deduce a morphism

BG(Λ)⊗Λ BG(Λ)→ BG(Λ).
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It is not difficult to check that this map defines an associative multiplication mor-
phism, with unit element the image of the unit element in BGr0

G
(Λ) = Λ. Moreover,

combined with the comultiplication considered above, this multiplication morphism
endows BG(Λ) with a bialgebra structure, such that the equivalence of categories
SG admits a canonical monoidal structure.

This finishes the proof of Theorem 6.1.

6.8. Morphisms related to constant term functors. We finish this section
with the construction of morphisms of coalgebras induced by the constant term
functors.

Let us consider a parabolic subgroup P ⊂ G containing A, and its Levi factorM
containing A. We can then consider the Λ-coalgebra BG(Λ) associated with G, in
other words with G and its special facet a, but also the Λ-coalgebra BM(Λ) asso-
ciated withM, i.e. with the reductive group M and its special facet aM (see §3.1).
Here,M is the scheme-theoretic closure of M in G, see (3.1).

Proposition 6.7. For any parabolic subgroup P containing A, there exists a canon-
ical morphism of coalgebras

resP,G : BG(Λ)→ BM(Λ)

such that the diagram

Perv(HkG ,Λ) comodBG(Λ)

Perv(HkM,Λ) comodBM(Λ)

SG

CTP,G

SM

commutes, where the right vertical arrow is the functor induced by resP,G. Moreover
these morphisms are compatible with change of scalars in the obvious way, and
with parabolic restriction in the sense that given parabolic subgroups P ⊂ P ′ ⊂ G
containing A, with Levi factors M ⊂M ′ containing A, we have

(6.6) resP∩M′,M′ ◦ resP′,G = resP,G ,

whereM′ is the scheme-theoretic closure of M ′ in G.

Proof. The existence of resP,G follows from Proposition 4.8, using the standard
fact that any exact functor between categories of comodules (finitely generated
over Λ) over some Λ-coalgebras compatible with the forgetful functor to modΛ is
induced by a morphism of coalgebras; see e.g. [BR18, Proposition 1.2.6(2)] (where
the assumption that the coalgebras are defined over a field is not necessary). The
compatibility with change of scalars is obvious. The equality (6.6) follows from
Lemma 4.5. �

Remark 6.8. We emphasize that at this stage resP,G is only a morphism of coalge-
bras. We will later prove that it is also compatible with products, hence a morphism
of bialgebras (see Proposition 9.2), but this fact is not clear for now.

7. The absolute case

7.1. Absolute variants. Recall from §2.1 that this paper treats two parallel geo-
metric settings: the “ramified” case (including “unramified groups”) involving the
group G (where geometric objects live over F), and the “absolute” case involving
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the group F s[[z]] ⊗F G (where geometric objects live over the field F s). So far in
this paper, we have considered only the ramified case. In fact, up to replacing F s
by its algebraic closure,5 the absolute case is a special case of the ramified one.

In this section, we consider the absolute setting. We point out that all the con-
structions and results of Sections 2–6 are applicable in the absolute case. We adapt
notation from those sections by replacing the subscript “G” by “G” throughout. For
instance, we write GrG instead of GrG , FG instead of FG , L+G instead of L+G, and
so on. (To be completely formal, these objects should be be denoted GrF s[[z]]⊗FG,
FF s[[z]]⊗FG, L+(F s[[z]]⊗F G), etc.)

The absolute counterparts of most statements from Sections 2–6 have appeared
in the literature on the “usual” geometric Satake equivalence, in particular in [MV07,
BR18]. However, there is one significant point of departure: the monoidal struc-
ture on FG from Section 5 is constructed very differently from the one described
in [MV07], and it is a priori not clear whether they coincide.

The main result of this section (Theorem 7.6) asserts that when Λ = K, they do
coincide. The most important consequence is that in this special case, the monoidal
structure from Section 5 admits a commutativity constraint. We will see later in
the paper (Corollary 8.9 and Proposition 9.1) how to transfer this commutativity
to the ramified case and to general Λ.

7.2. The fusion monoidal structure via equivariant cohomology. Let us
denote by

(7.1) φfus : FG(F )⊗Λ FG(G )
∼−→ FG(F ?0 G )

the natural isomorphism constructed in [MV07, Proposition 6.4] or [BR18, Proposi-
tion 1.10.11]. The subscript “fus” refers to the “fusion product,” which is used in the
construction of this isomorphism. We will not review the details of the construction
in general.

However, in the special case where Λ = K, φfus has an alternative description in
terms of equivariant cohomology, as explained in [AR, §3.3.4]. In this subsection,
we recall this alternative description.6

For the remainder of this subsection, we assume that Λ = K. Let RG,K be the
L+G-equivariant cohomology of a point, i.e., the graded K-algebra given by

RG,K :=
⊕
n∈Z

HnL+G(Spec(F s),K) =
⊕
n∈Z

HomDb
c ([Spec(F s)/L+G]ét,K)(K,K[n]).

The ring K, considered as a graded object concentrated in degree 0, has a natural
structure of graded RG,K-module.

More generally, for any Levi subgroup M ⊂ G, we can define the ring RM,K in
the same way, and there is an obvious map of equivariant cohomology rings

(7.2) RG,K → RM,K.

5Note that, if F alg is an algebraic closure of F s the extension F s → F alg is purely inseparable,
hence the morphism Spec(F alg) → Spec(F s) is a universal homeomorphism, see [Sta22, Tag
0BR5]; it therefore induces equivalences between the appropriate categories of sheaves.

6In fact, the equivariant cohomology description is available for any Λ in which the torsion
primes of G are invertible. As the case Λ = K is sufficient for our proof of Theorem 7.6, we will
not consider more general rings here.

https://stacks.math.columbia.edu/tag/0BR5
https://stacks.math.columbia.edu/tag/0BR5
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It is well known that in the case of a torus, we have that RT,K is the graded
symmetric algebra on

H2
L+T (Spec(F s),K) ∼= K⊗Z X∗(T ).

The (absolute) Weyl group Wabs of (GF s , TF s) acts on this ring, and the map (7.2)
(in the special case M = T ) induces an isomorphism

RG,K
∼−→ RWabs

T,K .

For F ∈ Db
c (HkG,K) and n ∈ Z we set

HnL+G(GrG,F ) := HomDb
c (HkG,K)(KX ,F [n]),

where KX is (the object whose image in Db
c (GrG,K) is) the constant sheaf on some

L+G-stable closed subscheme X that contains the support of F . As above, the
same definition applies when G is replaced by a Levi subgroup M , e.g. by T .

Let gModRG,K be the category of graded RG,K-modules. Define the functor

Feq
G : Db

c (HkG,K)→ gModRG,K

by

Feq
G (F ) :=

⊕
n∈Z

HnL+G(GrG,F ).

Let M ⊂ G be a Levi subgroup, and recall the natural morphism

hM,G : [L+M\GrG]ét → HkG.

Then we can also consider L+M -equivariant cohomology of complexes on HkG: for
F in Db

c (HkG,K) we set

Feq,M
G (F ) :=

⊕
n∈Z

HnL+M (GrG, h
∗
M,GF ).

The next statements are well known; see e.g. [Zhu17, §5.2] (see also [AR, §3.3.4]
for analogues in an “analytic” setting).

Lemma 7.1. For any F ∈ Perv(HkG,K), Feq
G (F ) is a finitely generated projective

RG,K-module. Moreover, there is a natural isomorphism

(7.3) FG(F ) ∼= K⊗RG,K Feq
G (F )

and, for any Levi subgroup M ⊂ G, a natural isomorphism

(7.4) RM,K ⊗RG,K Feq
G (F ) ∼= Feq,M

G (h∗M,GF ).

Let gprojRG,K be the category of finitely generated projective RG,K-modules. In
view of Lemma 7.1, one can regard Feq

G as a functor

Feq
G : Perv(HkG,K)→ gprojRG,K .

Proposition 7.2. For F ,G ∈ Perv(HkG,K), there is a natural isomorphism

Feq
G (F ? G ) ∼= Feq

G (F )⊗RG,K Feq
G (G ),

making Feq
G : Db

c (HkG,K)→ gprojRG,K into a monoidal functor.
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The preceding two results give rise to a monoidal structure on

FG : (Perv(HkG,K), ?)→ (modK,⊗K)

as follows: Lemma 7.1 expresses FG as the composition of the functor

K⊗RG,K (−) : gprojRG,K → modK

with Feq
G : Perv(HkG,K) → gprojRG,K . The former is obviously monoidal, and the

latter is monoidal by Proposition 7.2, so FG is monoidal as well.

7.3. Comparison of the monoidal structures. In this subsection we compare
the monoidal structures on FG constructed in (5.1) and (7.1).

Proposition 7.3. For F ∈ Perv(HkG,K), there is a natural isomorphism

(7.5) RT,K ⊗RG,K Feq
G (F ) ∼= Feq

T (CTB,G(F )).

Moreover, this isomorphism has the property that the following diagram commutes,
where the upper vertical arrows are induced by the augmentation map RT,K → K:

RT,K ⊗RG,K Feq
G (F ) Feq

T (CTB,G(F ))

K⊗RG,K Feq
G (F ) K⊗RT,K Feq

T (CTB,G(F ))

FG(F ) FT (CTB,G(F )).

∼
(7.5)

o(7.3) o (7.3)

∼
Prop. 4.8

Proof. Recall the functor Feq,T
G considered above. In view of (7.4), to prove the

proposition it suffices to establish a version of the commutative diagram above in
which the upper left-hand corner is replaced by Feq,T

G (F ). The desired isomorphism

Feq,T
G (F ) ∼= Feq

T (CTB,G(F ))

can be obtained by copying the proof of Proposition 4.8 and replacing all oc-
currences of ordinary cohomology by L+T -equivariant cohomology. (See [YZ11,
Lemma 2.2] for similar considerations.) The commutativity of the diagram is then
immediate from the construction. �

Proposition 7.4. For F ,G ∈ Perv(HkG,K), there is a natural isomorphism

(7.6) RT,K ⊗RG,K Feq
G (F ? G ) ∼= Feq

T (mT !C̃TB,G(p∗(F
L

�K G ))).

Moreover, this isomorphism has the property that the following diagram commutes:

RT,K ⊗RG,K Feq
G (F ? G ) Feq

T (mT !C̃TB,G(p∗(F �LK G )))

K⊗RG,K Feq
G (F ? G ) K⊗RT,K Feq

T (mT !C̃TB,G(p∗(F �LK G )))

FG(F ? G ) FT (mT !C̃TB,G(p∗(F �LK G ))).

∼
(7.6)

o(7.3) o (7.3)

∼
Prop. 4.18

Proof. This is very similar to the proof of Proposition 7.3, replacing the details
from the proof of Proposition 4.8 by those from Proposition 4.18. �
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The following lemma is clear from constructions.

Lemma 7.5. For F ,G ∈ Perv(HkG,K), the following diagram commutes:

Feq
T (mT !C̃TB,G(p∗G(F �LK G ))) Feq

T (CTB,G(F ) ?0 CTB,G(G ))

Feq
T (CTB,G(F ))⊗RT,K Feq

T (CTB,G(G ))

RT,K ⊗RG,K Feq
G (F ? G ) RT,K ⊗RG,K Feq

G (F )⊗RG,K Feq
G (G ).

Prop. 7.4 o

Cor. 5.3
∼

Prop. 7.2o

Prop. 7.3o

Prop. 7.2
∼

For the next statement, we come back to the setting of a general ring of coeffi-
cients Λ as in §4.1.

Theorem 7.6. The monoidal structures on FG : Perv(HkG,Λ)→ modΛ considered
in (5.1) and (7.1) agree.

Proof. We must show that for F ,G ∈ Perv(HkG,Λ), the two isomorphisms

φ, φfus : FG(F )⊗Λ FG(G )
∼−→ FG(F ?0 G )

are equal. Before proving this in general, we consider a number of special cases.
Case 1. Λ = K and G = T . In this case, the monoidal structure in (7.1) is

provided by Lemma 5.1, and the agreement with the structure provided by Propo-
sition 7.2 is clear.

Case 2. Λ = K, and G is arbitrary. Apply the functor K ⊗RT,K (−) to the
commutative diagram in Lemma 7.5. Using Lemma 7.1, the commutative diagrams
in Propositions 7.3 and 7.4, and Case 1 above, the resulting diagram can be written
as

FT (mT !C̃TB,G(p∗G(F �LK G ))) FT (CTB,G(F ) ?0 CTB,G(G ))

FT (CTB,G(F ))⊗K FT (CTB,G(G ))

FG(F ? G ) FG(F )⊗K FG(G ).

Prop. 4.18 o

Cor. 5.3
∼

Lem. 5.1o

Prop. 4.8o
(7.1)
∼

The result follows by comparison with the commutative diagram in Remark 5.5.
Case 3. Λ = O, and FG(F ) and FG(G ) are free over O. This case follows from

Case 2 by compatibility of our constructions with appropriate change-of-scalars
functors.

Case 4. Λ = O, and F and G are both direct sums of objects of the form PZ(O).
By Property (3) in §6.5, this is a special case of Case 3.

Case 5. Λ = k, and F and G are both direct sums of objects of the form PZ(k).
This case follows from Case 4 by Property (2) in §6.5 and compatibility with change
of scalars.

Case 6. Λ = O or k, and F and G are arbitrary. For Λ = O or k, any object
in Perv(HkG,Λ) is a quotient of a direct sum of objects of the form PZ(Λ), so the
result in this case follows from Cases 4 and 5. �
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7.4. “Absolute” geometric Satake equivalence. As mentioned already in §7.1
the structures we have considered on the category Db

c (HkG ,Λ) above have well
known (and older) counterparts for the group F s[[z]] ⊗F s GF s . In particular we
have the stack HkG over Spec(F s), the convolution product ? on the category
Db

c (HkG,Λ) defining a monoidal structure, the induced monoidal structure on the
subcategory Perv(HkG,Λ) of perverse sheaves obtained by setting

F ?0 G := pH 0(F ? G ),

and the total cohomology functor FG. Given a parabolic subgroup Q ⊂ GF s con-
taining the maximal torus TF s , with Levi factor containing TF s denoted L, we also
have the constant term functor

CTQ,G : Db
c (HkG,Λ)→ Db

c (HkL,Λ)

which is t-exact and admits a canonical monoidal structure.
On the other hand, denote by G∨Z the unique pinned reductive group scheme

over Z whose root datum is the dual of the root datum of GF s . Then, we set

G∨Λ := Λ⊗Z G
∨
Z .

We will denote by Rep(G∨Λ) the category of (algebraic) representations of this group
scheme on finitely generated Λ-modules.

Theorem 7.7. Fix a compatible system of `n-th roots of unity in F for all n ≥ 1.
Then, there exists a canonical equivalence of monoidal categories(

Perv(HkG,Λ), ?0
) ∼= (Rep(G∨Λ),⊗Λ

)
under which the functor FG corresponds to the obvious forgetful functor Rep(G∨Λ)→
modΛ. Moreover, under these equivalences the “change of scalars” functors analo-
gous so those considered in §4.1 correspond to the obvious functors on categories of
representations.

Proof sketch. This statement is essentially the usual version of the geometric Satake
equivalence from [MV07]. Let us indicate the main steps of the proof.

First, for any connected reductive groupH over F s with Borel subgroup BH ⊂ H
and maximal torus TH ⊂ BH , the absolute version of Theorem 6.1 gives us a
bialgebra BH(Λ) and an equivalence of monoidal categories(

Perv(HkF s[[z]]⊗FsH ,Λ), ?0
) ∼−→ (

comodBH(Λ),⊗Λ

)
.

It is shown by Mirković–Vilonen [MV07, §11] (see also [BR18, §1.13.2]) that BH(Λ)
is in fact a commutative Hopf algebra, so that

ĤΛ := Spec(BH(Λ))

is a flat affine group scheme over Λ. Thus, Theorem 6.1 can be restated as an
equivalence of monoidal categories(

Perv(HkF s[[z]]⊗FsH ,Λ), ?0
) ∼= (Rep(ĤΛ),⊗Λ

)
.

This construction is compatible with change of scalars in the sense that there are
canonical identifications

ĤK ∼= K⊗O ĤO, Ĥk ∼= k⊗O ĤO.

Next, in [MV07, §12] (see also [BR18, §1.14]), Mirković–Vilonen construct (using
the constant term functor CTBH ,H) a canonical subgroup T̂H,Λ of ĤΛ canonically
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isomorphic to the diagonalizable group DΛ(X∗(TH)) over Λ associated with the
lattice X∗(TH) of cocharacters of TH ; this construction is also compatible with
extension of scalars in the same sense as above. They then check that ĤO is a
split reductive group scheme over O with maximal torus T̂H,O, and that the root
datum of (ĤO, T̂H,O) is dual to that of (H,TH). The theorem will follow from
this construction (applied to the group H = GF s , its Borel subgroup BF s and the
maximal torus TF s) once we explain how to construct a canonical pinning on ĤO.

This can be done as follows, following e.g. [FS21, §VI.11].7 First, one has a
canonical Borel subgroup B̂H,O (i.e. a choice of a system of positive roots) obtained
as the subgroup stabilizing the filtration of the fiber functor FH on the category
Perv(HkF s[[z]]⊗FsH ,O) given by

(FH)≥m(F ) =
⊕
i≥m

Hi(GrF s[[z]]⊗FsH ,F ).

The only remaining structure we have to construct is a basis of each weight space in
the Lie algebra of ĤO corresponding to a simple root. Using an appropriate constant
term functor one reduces the construction to the case where H is of semisimple rank
1. Then H ′ := H/Z(H) is isomorphic to PGL2,F s , hence its affine Grassmannian
GrF s[[z]]⊗FsH′ has a unique 1-dimensional Schubert variety isomorphic to P1

F s , and
Ĥ ′O identifies with the special linear group of the total cohomology of this variety,
see [FS21, Comments after Lemma VI.11.2]. The zeroth cohomology of this orbit
has a canonical basis, and using the system of `n-th roots of unity in order to
trivialize Tate twists, so does the second cohomology. We get an identification
Ĥ ′O = SL2,O, and in particular a canonical pinning on Ĥ ′O. Finally, we have

(GrF s[[z]]⊗FsH)red
∼= π1(H)×π1(H′) (GrF s[[z]]⊗FsH′)red

(where π1(H) is the algebraic fundamental group of H, and similarly for H ′), which
provides an isomorphism

ĤO = DO(π1(H))×µ2,O Ĥ ′O

compatible in the natural way with the canonical maximal torus on each side. (See
the proof of Proposition 9.1 below for a detailed version of similar considerations.)
We deduce the desired pinning of ĤO, which finishes the proof. �

7.5. Galois action. In §7.4 we have considered the “usual” affine Grassmannian
GrG of the F s-group GF s , an ind-scheme over F s. In fact one can also consider
the affine Grassmannian GrF [[z]]⊗FG associated with the (reductive, but possibly
nonsplit) F -group G (an ind-scheme over F ), and we have a canonical identification

F s ⊗F GrF [[z]]⊗FG
∼−→ GrG,

see (2.2). The Galois group I = Gal(F s/F ) acts on the left-hand side via its action
on Spec(F s), which provides an action on GrG. (Here I acts by automorphisms as
F -ind-scheme, but not as F s-ind-scheme.)

From the action of the group I on GrG we deduce an action on the categories
Db

c (HkG,Λ) and Perv(HkG,Λ), which is easily seen to be compatible with the con-
volution products ? and ?0 respectively. The functor FG is also invariant under

7This construction was known for a long time, but [FS21] provides a convenient and explicit
construction.
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these actions. By Tannakian formalism, and in view of Theorem 7.7, this means
that there exists an action of I on G∨Λ (by automorphisms of group scheme over Λ)
which induces the corresponding action on Perv(HkG,Λ).

Lemma 7.8. The action of I on G∨Λ preserves the canonical pinning constructed
in the course of the proof of Theorem 7.7, and factors through an action of a finite
quotient.

Proof. The fact that the canonical maximal torus of G∨Λ is preserved by the ac-
tion of I follows from the fact that this torus identifies with the centralizer of the
cocharacter provided by the cohomological grading. (Alternatively, one may prove
this independence by noting that the maximal torus does not depend on the choices
involved in its construction, see [BR18, §1.5.5].) The induced action on the canon-
ical maximal torus DΛ(X∗(T )) is via the natural I-action on X∗(T ). Since T splits
over a finite extension of F , this implies in particular that there exists a normal
subgroup I ′ ⊂ I of finite index which acts trivially on this torus.

The canonical Borel subgroup of G∨Λ is also manifestly stable under the I-action.
The fact that the canonical simple root vectors are permuted is clear from their
construction, since I permutes the Levi subgroups of GF s of semisimple rank 1
according to its permutation of absolute simple roots. Finally, since a pinning-
preserving automorphism is determined by the induced action on the root datum,
the subgroup I ′ considered above acts trivially on G∨Λ, showing that the action of
I factors through a finite quotient. �

It is clear that the action of I is compatible with extension-of-scalars, in the sense
that the actions on G∨K and G∨k are induced by the action on G∨O via the canonical
identifications

G∨K = K⊗O G
∨
O, G∨k = k⊗O G

∨
O.

8. Nearby cycles

8.1. Bĕılinson–Drinfeld Grassmannians. We now consider a “Bĕılinson–Drin-
feld Grassmannian” relating the ind-schemes GrG and GrG. We follow the purely
local definition from [Ric21, §0.3]. For any OF -algebra R we equip R[[z]] with the
OF -algebra structure given by the unique F-algebra map OF = F[[t]] → R[[z]] such
that t 7→ z + t.

Set S := Spec(OF ). The Bĕılinson–Drinfeld Grassmannian GrG,S associated
with G is the functor from the category of OF -algebras to sets sending R to the set
of isomorphism classes of pairs (E , β) where:

• E is a G ×S Spec(R[[z]])-torsor on Spec(R[[z]]);
• β is a trivialization of E on Spec(R((z))).

It is proven in [Ric16, Theorem 2.19, using Lemma 3.1] that this functor is rep-
resented by an ind-projective ind-scheme over S. Furthermore, it admits a loop
uniformization, i.e. it can be written as the étale quotient of the full loop group
LSG by the positive loop group L+

SG. Here LSG and L+
SG are the group-valued

functors on the category of OF -algebras R given by G(R((z))) and G(R[[z]]), respec-
tively.

Remark 8.1. As explained in [Ric21, §0.3], the ind-scheme GrG,S agrees with the
base change of the Bĕılinson–Drinfeld Grassmannian constructed using a spreading
of G over some curve as follows. By [Ric16, Lemma 3.1] (or [HR21, §5.1.1]) there
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exists a smooth affine connected F-curveX with a point x0 ∈ X(F), an identification
ÔX,x0

= OF on completed local rings, and a smooth affine X-group scheme G
together with an identification of OF -group schemes G ×X S = G. One then has
the Bĕılinson–Drinfeld Grassmannian GrG,X associated with G and X. The base
change GrG,X ×X S agrees with GrG,S as defined above.

8.2. A nearby cycles setting. Let us describe the fibers of GrG,S in more de-
tail, following [Ric16, §2.2]. Let s = Spec(F), resp. η = Spec(F ), be the special,
resp. generic, point of S. As explained in [Ric16, Corollary 2.14], we have a canon-
ical identification

(8.1) s×S GrG,S ∼= GrG .

On the other hand, F [[z]] ⊗OF G is a reductive group scheme over F [[z]], and
by [Ric21, Lemma 0.2] there exists an isomorphism

F [[z]]⊗OF G ∼= F [[z]]⊗F G

where in the right-hand side we consider the obvious F -algebra morphism F →
F [[z]]; we fix once and for all such an isomorphism that maps

F [[z]]⊗OF A, resp. F [[z]]⊗OF T , resp. F [[z]]⊗OF B

into
F [[z]]⊗F A, resp. F [[z]]⊗F T, resp. F [[z]]⊗F B.

Similarly to (8.1), this provides an identification

η ×S GrG,S ∼= GrF [[z]]⊗FG.

Let also S be the spectrum of the normalization OF of OF in F s, and set

GrG,S := GrG,S ×S S.

Then OF is a valuation ring with fraction field F s and residue field F. Let η =
Spec(F s) and s = Spec(F) be the generic and special points of S, respectively. We
have

s×S GrG,S = s×S GrG,S = GrG

and

η ×S GrG,S = η ×η (η ×S GrG,S) = F s ⊗F GrF [[z]]⊗FG
(2.2)∼= GrF s[[z]]⊗FsGFs .

8.3. Actions via cocharacters. Let λ : Gm,S → A be a cocharacter over S. This
cocharacter defines an action of Gm,S on G over S, hence we can consider the
associated fixed points and attractor schemesMλ := G0 and Pλ := G+ as in §3.1.
The same considerations as in §8.1 allow to define the S-ind-schemes GrMλ,S and
GrPλ,S , and the obvious analogues of the statements in §8.2 hold in this case also.

The cocharacter λ induces a Gm,S-action on GrG,S , and we can consider the
associated fixed points and attractor functors (GrG,S)0 and (GrG,S)+. It follows
from [HR21, Lemma 5.3] that these functors are ind-schemes, and by naturality we
obtain again morphisms

(8.2) GrMλ,S → (GrG,S)0 and GrPλ,S → (GrG,S)+.

Proposition 8.2. The maps (8.2) are isomorphisms.
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Proof. The proof is similar to the fiberwise case (see Proposition 3.2). Namely, we
already know that both maps are closed immersions by [HR21, Theorem 5.6]. By
compatibility of fixed points and attractors with base change, Proposition 3.2 and
its absolute analogue imply that the maps under consideration are isomorphisms
over η (see also [HR21, Theorem 5.6]) and over s. In particular, they induce isomor-
phisms on the underlying reduced sub-ind-schemes after any base change. To show
that they are in fact isomorphisms, we use [HLR18, Lemma 8.6 and Remark 8.7]
and repeat the proof of Proposition 3.2 with slight modifications adapted to the
more general situation. Namely, to conclude the proof it suffices to show that for
any OF -algebra R which is a strictly henselian local artinian ring, the induced maps
GrMλ,S(R)→ (GrG,S)0(R) and GrPλ,S(R)→ (GrG,S)+(R) are bijective. We treat
the second case, leaving the first one to the reader.

The proof proceeds by induction on n(R), where as in the proof of Proposition 3.2
n(R) is the minimal positive integer n such that rad(R)n = 0. If n(R) = 1, then
R is an algebraically closed field. The map OF → R factors either through a map
F → R or F → R (depending on whether t maps to zero or not). As the maps
in (8.2) are isomorphisms over η and over s, this finishes the case n(R) = 1.

Assume now that n(R) > 1, and let J ⊂ R be an ideal of square 0 such that
n(R/J) < n(R). By induction we can assume that the map GrPλ,S(R/J) →
(GrG,S)+(R/J) is bijective. Using this and formal smoothness, we are reduced
to showing that any x ∈ (GrG,S)+(R) whose image in (GrG,S)+(R/J) is the im-
age of the “base point” section eS ∈ GrG,S(OF ) is in the image of GrPλ,S(R),
i.e., x corresponds to an element of TeS ,J((GrG,S)+). Here for an S-ind-scheme
X = colimi∈I Xi together with an S-point e ∈ X(S) we consider the R-module

(8.3) Te,J(X) := colimi∈I HomModR(ωXi,e ⊗OF R, J),

where ωXi,e = Γ(S, e∗ΩXi/S) is the global sections of the conormal sheaf associated
with the immersion e, see also the proof of Proposition 3.2, andModR is the category
of R-modules. The R-module Te,J(X) does not depend on the chosen presentation
of X as an ind-scheme over S, and its underlying set agrees with p−1(eR/J) where
p : X(R) → X(R/J) is the obvious map and eR/J denotes the image of e under
X(S)→ X(R/J). To finish the proof, it suffices to show that the map

(8.4) TeS ,J(GrPλ,S)→ TeS ,J((GrG,S)+)

is an isomorphism. The proof is completely analogous to the proof of Lemma 3.4
but replacing every occurrence of the tangent space or the Lie algebra by the R-
module (8.3), and the loop functors L and L+ by their relative versions LS and
L+
S respectively. We recall some key steps. Since R is strictly henselian, one has

GrG,S(R) = LSG(R)/L+
SG(R) which implies the equality

TeS ,J(GrG,S) = TeS ,J(LSG)/TeS ,J(L+
SG),

and similarly for G replaced by Pλ. Next, the Gm,S-action induces a Z-grading on
e∗ΩX/S for each Gm,S-invariant closed subscheme X in GrG,S and LSG respectively,
hence a Z-grading on TeS ,J(GrG,S), TeS ,J(LSG) and TeS ,J(L+

SG) respectively. We
get isomorphisms

TeS ,J((GrG,S)+) = TeS ,J(GrG,S)+ = TeS ,J(LSG)+/TeS ,J(L+
SG)+.

So, the claim (8.4) is equivalent to proving the equality

TeS ,J(LSG)+/TeS ,J(L+
SG)+ = TeS ,J(LSPλ)/TeS ,J(L+

SPλ).
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As in (3.7) we use the big cell to prove the equalities TeS ,J(LSG)+ = TeS ,J(LSPλ)
and TeS ,J(L+

SG)+ = TeS ,J(L+
SPλ), which finishes the proof. �

Corollary 8.3. The maps

(8.5) GrMλ,S
→ (GrG,S)0 and GrPλ,S → (GrG,S)+.

are isomorphisms.

Proof. This follows from Proposition 8.2 and compatibility of fixed points and at-
tractors with base change along S → S. �

8.4. Definition of the functor. We continue with the geometric setting of §8.2; in
particular we have an ind-scheme GrG,S → S where S = Spec(OF ), whose fiber over
the special point s = Spec(F), resp. over the geometric generic point η = Spec(F s),
identifies with GrG , resp. with the “traditional” affine Grassmannian

GrG := GrF s[[z]]⊗FsGFs

considered in Section 7. Consider the natural embeddings

GrG
j−→ GrG,S

i←− GrG .

The main player in this section will be the t-exact “nearby cycles” functor

ΨG := i∗j∗ : Db
c (GrG,Λ)→ Db

c (GrG ,Λ)

constructed as in §B.1.5.

Remark 8.4. The “true” nearby cycles functor associated with the data above is
rather the composition of ΨG with the pullback functor under the natural morphism
GrG → (GrG,S)η where (GrG,S)η is the fiber of GrG,S over η. The results mentioned
in §B.1.5 of course have antecedents in the literature; see e.g. [BBDG82, Appendix].
However these statements are usually given for the “true” nearby cycles functor
rather than for the version we consider, which justifies our references to [HS23].

As for the affine Grassmannian GrG in §2.4, the ind-scheme GrG has a strati-
fication given by the Cartan decomposition, with strata parametrized by X∗(T )+.
Namely, each λ ∈ X∗(T )+ determines an F s-point in GrG, and the L+G-orbit of
this point is a quasi-projective subscheme GrλG of GrG. Moreover, we have

|GrG| =
⊔

λ∈X∗(T )+

|GrλG|.

The intersection cohomology complex associated with the constant local system on
GrλG will be denoted J abs

!∗ (λ,Λ). (Here “abs” stands for “absolute.”)

Lemma 8.5. Let λ ∈ X∗(T )+, and denote by λ its image in X∗(T )+
I (see Lem-

ma 2.6(2)). Then we have

(jλ)∗ΨG(J abs
!∗ (λ,Λ)) ∼= Λ

GrλG
[〈λ, 2ρ〉].

Proof. The proof is the same as that of [Zhu15, Lemma 2.6] (see also [Ric16,
p. 3755]). Namely, consider the “global Schubert variety” Mλ of [Ric16, Defini-

tion 3.5]. By [Ric16, Corollary 3.14] we have an open subscheme
◦
Mλ ⊂ Mλ which

is smooth over S and contains GrλG, resp. GrλG , in its generic, resp. special, fiber. The
desired claim follows, by compatibility of nearby cycles with smooth pullback. �
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Note that in case Λ is a field, Lemma 8.5 implies that J!∗(λ,Λ) is a composition
factor of the perverse sheaf ΨG(J abs

!∗ (λ,Λ)).

8.5. Compatibility with convolution. The functor ΨG of §8.4 admits an “equi-
variant version;” more specifically there exists a canonical functor

(8.6) ΨG : Db
c (HkG,Λ)→ Db

c (HkG ,Λ)

which is related to the functor of §8.4 by the obvious commutative diagram involving
pullback functors to sheaves on the respective affine Grassmannians. Moreover this
functor is t-exact, hence restricts to an exact functor

(8.7) Perv(HkG,Λ)→ Perv(HkG ,Λ).

Proposition 8.6. The functor (8.6) admits a canonical monoidal structure with
respect to the convolution products ?. As a consequence, the functor (8.7) admits a
canonical monoidal structure with respect to the convolution products ?0.

Proof. The proof is similar to that given in [Zhu15, Theorem-Definition 3.1] or [AR,
§3.4] (which, itself, essentially goes back to [Gai01]). The idea is to consider a
deformation of HkConvG to HkConvG ; more specifically, given X and G as in
Remark 8.1, one considers (the restriction to S of) the stack HkConvG,X over
X defined as follows. Given an F-algebra R and x ∈ X(R), we denote by Γ̂x the
spectrum of the completion of the ring R⊗FO(X) with respect to the ideal defining
the graph Γx ⊂ X ⊗F R of x. Then HkConvG,X(R) is defined as the category of
tuples (x, E1, E2, E3, α, β) where x ∈ X(R), E1, E2, E3 are G-bundles on Γ̂x, and α,
resp. β, is an isomorphism between the restrictions of E1 and E2, resp. E2 and E3,
to Γ̂x r Γx. As in §8.4, we have natural embeddings

HkConvG
̃−→ HkConvG,S

ı̃←− HkConvG

and a nearby cycles functor

Ψ̃G := ı̃∗̃∗ : Db
c (HkConvG,Λ)→ Db

c (HkConvG ,Λ).

By compatibility of nearby cycles with external tensor product, smooth pullback,
and proper push-forward, the following diagram commutes up to natural isomor-
phism:

Db
c (HkG,Λ)×Db

c (HkG,Λ) Db
c (HkG ,Λ)×Db

c (HkG ,Λ)

Db
c (HkConvG,Λ) Db

c (HkConvG ,Λ)

Db
c (HkG,Λ) Db

c (HkG ,Λ),

ΨG×ΨG

p∗G(−�LΛ−)

?

p∗G(−�LΛ−)

?
Ψ̃G

mG! mG!

ΨG

and this yields the desired monoidal structure on ΨG . �

8.6. Compatibility with constant term functors. Recall the constant term
functors from §4.3, and their “absolute” analogues considered in §7.4. Fix λ ∈
X∗(A). This cocharacter determines a parabolic subgroup Pλ ⊂ G (containing
A) and its Levi factor Mλ, see §3.1. By extension of scalars, it also determines
a cocharacter λabs ∈ X∗(T ), hence a parabolic subgroup P abs

λ ⊂ GF s (containing
TF s) and its Levi factor Mabs

λ .
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By compatibility of attractors and fixed points with base change, we have

P abs
λ = Pλ ⊗F F s and Mabs

λ = Mλ ⊗F F s.
More specifically, assume that Pλ is standard with respect to B, i.e. that λ is
dominant. Then Pλ is the standard parabolic subgroup of G determined by the
subset

Φs
λ := {α ∈ Φs | 〈λ, α〉 = 0} ⊂ Φs

(see [BT65, §5.12]), and P abs
λ is the standard parabolic subgroup of GF s determined

by the subset
{α ∈ Φs

abs | 〈λ, α〉 = 0} ⊂ Φs
abs,

i.e. by the inverse image of Φs
λ under (2.6).

Let Pλ andMλ be as in §3.1, and consider the action of Gm,S on the ind-scheme
GrG,S via the cocharacter of A naturally attached to λ (see §8.3). By Corollary 8.3,
the fiber over s, resp. η, of (GrG,S)+ identifies with GrPλ , resp. GrF s[[z]]⊗FsP abs

λ
, and

the fiber over s, resp. η, of (GrG,S)0 identifies with GrMλ
, resp. GrF s[[z]]⊗FsMabs

λ
.

Proposition 8.7. In the setting above, there exists a canonical isomorphism

(8.8) ΨMλ
◦ CTP abs

λ ,G
∼= CTPλ,G ◦ΨG

of functors from Db
c (HkG,Λ) to Db

c (HkMλ
,Λ). In case Pλ = B, the restriction

of this isomorphism to Perv(HkG,Λ) is compatible with the monoidal structures on
CTB,G and CTB,G from Proposition 5.4, and the monoidal structures on ΨG and
ΨT from Proposition 8.6.

Proof. The isomorphism (8.8) follows from the compatibility of hyperbolic local-
ization with nearby cycles, see [Ric19, Theorem 3.3].

When Pλ = B, we have the following commutative diagram, in which the front
and rear faces come from the proof of Proposition 5.4, and the left and right faces
are obtained by applying pH 0 to the diagram in the proof Proposition 8.6. (We
omit most subscripts to avoid cumbersome notation, and write P for Perv to save
space.)

P(HkG,Λ)× P(HkG,Λ) P(HkT ,Λ)× P(HkT ,Λ)

P(HkG ,Λ)× P(HkG ,Λ) P(HkT ,Λ)× P(HkT ,Λ)

P(HkG,Λ) P(HkT ,Λ)

P(HkG ,Λ) P(HkT ,Λ)

CT×CT

(−)?0(−)

Ψ×Ψ

(−)?0(−)

Ψ×Ψ

CT×CT

(−)?0(−)
Ψ

CT

Ψ

(−)?0(−)

CT

The commutativity of this diagram implies that for F ,G ∈ Perv(HkG,Λ) the fol-
lowing diagram commutes, where we write Babs for BF s :

ΨT (CTBabs,G(F ?0 G )) ΨT (CTBabs,G(F ) ?0 CTBabs,G(G ))

CTB,G(ΨG(F ?0 G )) ΨT (CTBabs,G(F )) ?0 ΨT (CTBabs,G(G ))

CTB,G(ΨG(F ) ?0 ΨG(G )) CTB,G(ΨG(F )) ?0 CTB,G(ΨG(G )).

Prop. 5.4

(8.8) Prop. 8.6

Prop. 8.6 (8.8)

Prop. 5.4

Thus, in this case, (8.8) is an isomorphism of monoidal functors. �
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8.7. Compatibility with fiber functors. Recall the functor FG of §4.4, and its
analogue FG considered in Section 7.

Lemma 8.8. There exists a canonical isomorphism

FG ◦ΨG ∼= FG

of monoidal functors from Perv(HkG,Λ) to modΛ.

Proof. The isomorphism follows from compatibility of nearby cycles with proper
pushforward, applied to the proper morphism GrG,S → S. By construction of the
monoidal structures on FG and FG (see also the discussion in §7.3), and in view of
Proposition 8.7, to prove the compatibility with monoidal structures in general it
suffices to prove it in case G = T , where it is obvious. �

8.8. Application to coalgebras. Recall from Theorem 6.1, resp. Theorem 7.7,
that we have a canonical equivalence of categories

Perv(HkG ,Λ)
∼−→ comodBG(Λ), resp. Perv(HkG,Λ)

∼−→ Rep(G∨Λ) = comodO(G∨Λ)

under which the functor FG , resp. FG, corresponds to the natural forgetful functor
to modΛ.

Corollary 8.9. There exists a canonical morphism of Λ-bialgebras

fG,Λ : O(G∨Λ)→ BG(Λ)

such that the diagram

Perv(HkG,Λ) Rep(G∨Λ)

Perv(HkG ,Λ) comodBG(Λ)

Thm. 7.7
∼

ΨG

Thm. 6.1
∼

commutes, where the right vertical arrow is the functor induced by fG,Λ. Moreover,
this morphism factors through a morphism of Λ-bialgebras

f̃G,Λ : O((G∨Λ)I)→ BG(Λ).

Proof. The existence of fG,Λ follows from the same considerations as for Proposi-
tion 6.7. (In this case the compatibility with products uses the monoidal structure
on the functor ΨG .) To prove that this morphism factors through the invariants
O((G∨Λ)I), as e.g. in [Zhu15, Lemma 4.5] one has to check that for any γ ∈ I and
any F ∈ Perv(HkG,Λ) we have a canonical isomorphism

ΨG(γ ·F ) ∼= ΨG(F ).

Now we have GrG,S = GrG,S×SS, and the I-action on F s stabilizes OF and induces
the trivial action on F. Hence the action of I on η ×S GrG,S = GrG extends to an
action on GrG,S which restricts to the trivial action on s ×S GrG,S . The desired
property follows. �

Let us now consider the setting of §8.6. We can consider the morphism of coal-
gebras fG,Λ from Corollary 8.9, and also the analogous morphism fMλ,Λ for the
reductive group Mλ and its parahoric group scheme Mλ. On the other hand we
have the morphism

resPλ,G : BG(Λ)→ BMλ
(Λ)
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of Proposition 6.7. The same considerations provide a morphism of Hopf algebras

resPλ,G : O(G∨Λ)→ O((Mλ)∨Λ)

which identifies (Mλ)∨Λ with the Levi subgroup of G∨Λ which is Langlands dual to
the Levi subgroup F s ⊗F Mλ ⊂ GF s ; see e.g. [BR18, §1.15.2].

The following claim is a direct consequence of Proposition 8.7.

Corollary 8.10. In the setting of Proposition 8.7, we have

fMλ,Λ ◦ resPλ,G = resPλ,G ◦ fG,Λ.

In this setting we have actions of I both on G∨Λ and on (Mλ)∨Λ (see §7.5), and
it is easily seen that the morphism resPλ,G is I-equivariant. It therefore induces a
morphism

r̃esPλ,G : O((G∨Λ)I)→ O(((Mλ)∨Λ)I)

which satisfies
f̃Mλ,Λ ◦ r̃esPλ,G = resPλ,G ◦ f̃G,Λ.

9. The ramified geometric Satake equivalence

9.1. Commutativity. We will now prove that BG(Λ) is the coordinate ring of a
group scheme over Λ.

Proposition 9.1. The Λ-bialgebra BG(Λ) is a commutative Hopf algebra. In par-
ticular it makes sense to consider the spectrum

G∨Λ := Spec(BG(Λ)),

and this affine scheme has a canonical structure of flat group scheme over Λ.

Proof. Assume for a moment that G is semisimple of adjoint type (i.e. has triv-
ial center). By Lemma 6.2, the category Perv(HkG ,K) is semisimple; its simple
objects are the intersection cohomology complexes J!∗(λ,K) for λ ∈ X∗(T )+

I .
Lemma 2.6(2) and Lemma 8.5 imply that any of these simple objects is a sub-
quotient of an object in the image of ΨG ; using [Sch92, Lemma 2.2.13] we deduce
that the morphism fG from Corollary 8.9 is surjective. Since O(G∨K) is commu-
tative, this implies that BG(K) is commutative. By flatness of BG(O) and the
isomorphisms (6.1), we deduce that BG(Λ) is commutative for any Λ. In particular,
we can therefore consider the semigroup scheme

G∨Λ := Spec(BG(Λ))

over Λ. The fact that this semigroup scheme is a group scheme, i.e. that BG(Λ)
admits an antipode, can be checked as in [BR18, Proposition 1.13.4]. Since BG(Λ)
is flat over Λ, this group scheme is flat.

Now we drop the assumption that G is semisimple of adjoint type, and consider
the quotient morphism G → Gad as in the proof of Lemma 2.6(1). We have an
induced equivariant map of buildings B(G,F ) → B(Gad, F ) that induces a bijec-
tion between facets. Let aad ⊂ B(Gad, F ) be the facet corresponding to a; then we
can consider the parahoric group scheme Gad for Gad corresponding to aad. Since
parahoric group schemes are smooth, [BT84, Proposition 1.7.6] yields a morphism
G → Gad of group schemes over OF , which induces a morphism of ind-schemes

(9.1) GrG → GrGad
.
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On the other hand, the Kottwitz morphism provides a map

GrG → π1(G)I

where π1(G)I is as in §2.3 and π1(G)I is the associated ind-scheme over F. We also
have the similar ind-scheme π1(Gad)I (which in this case is a scheme since π1(Gad)I
is finite), and morphisms

π1(G)I → π1(Gad)I and GrGad
→ π1(Gad)I .

Together, these morphisms induce a map

GrG → GrGad
×π1(Gad)I π1(G)I .

The fibers of the morphism GrGad
→ π1(Gad)I are the connected components of

GrGad
; hence any object of Perv(HkGad

,Λ) admits a canonical grading by π1(Gad)I .
By the same considerations as in the proof of Proposition 6.7, we deduce a morphism
of Λ-group schemes

DΛ(π1(Gad)I)→ (Gad)∨Λ.

Corollary A.4 implies that the datum of an object in Perv(HkG ,Λ) is equivalent to
the datum of an object in Perv(HkGad

,Λ) together with a “lift” of the associated
π1(Gad)I -grading to a π1(G)I -grading, or in other words of a representation of the
group scheme (Gad)∨Λ together with an “extension” of the action of the diagonaliz-
able group scheme DΛ(π1(Gad)I) to an action of the diagonalizable group scheme
DΛ(π1(G)I). It follows that BG(Λ) is the structure algebra of the flat Λ-group
scheme

DΛ(π1(G)I)×DΛ(π1(Gad)I)
Spec(Λ) (Gad)∨Λ,

which finishes the proof. �

Now we consider a parabolic subgroup P ⊂ G containing A, and the associated
morphism resP,G from Proposition 6.7.

Proposition 9.2. For any parabolic subgroup P ⊂ G containing A, resP,G is a
morphism of Hopf algebras.

Proof. The proof is similar to that of Proposition 9.1. Namely, in case G is semisim-
ple of adjoint type the claim follows from the similar claim for resP,G in case Λ = K,
which is well known, see §8.8. (Note that in this case any Levi subgroup ofG satisfies
the conditions in Lemma 2.6(2), so that the associated morphism of Corollary 8.9
is surjective.) The general case can then be reduced to this one. �

9.2. Identification of the dual group. Passing to spectra, the morphism f̃G of
Corollary 8.9 provides a canonical morphism of Λ-group schemes

ϕG,Λ : G∨Λ → (G∨Λ)I .

By (6.1), there exist canonical isomorphisms

(9.2) G∨K
∼−→ K⊗O G∨O , G∨k

∼−→ k⊗O G∨O .
On the other hand, by compatibility of fixed points with base change (see [ALRR23,
(2.1)]), we also have canonical isomorphisms

(9.3) (G∨K)I
∼−→ K⊗O (G∨O)I , (G∨k )I

∼−→ k⊗O (G∨O)I .

These identifications are compatible with the corresponding morphisms ϕG,Λ in the
obvious way.



A MODULAR RAMIFIED GEOMETRIC SATAKE EQUIVALENCE 63

The following theorem is the main result of this paper. Its proof will occupy the
rest of the section.

Theorem 9.3. For any Λ, the morphism ϕG,Λ is an isomorphism.

We start with a reduction of this statement to semisimple groups of adjoint type.
Recall from the proof of Proposition 9.1 that we have a canonical integral model
Gad of the adjoint quotient Gad of G induced by the parahoric model G. Of course,
the choice of B determines a Borel subgroup in Gad, and as noted in the proof of
Lemma 2.6(1) the choice of A determines a maximal split torus in Gad. Hence we
have all the ingredients to run the above constructions for the group Gad.

Lemma 9.4. If Theorem 9.3 holds for the group Gad, then it holds for G.

Proof. As noted in the course of the proof of Proposition 9.1, we have

(9.4) G∨Λ = DΛ(π1(G)I)×DΛ(π1(Gad)I)
Spec(Λ) (Gad)∨Λ.

On the other hand, if Z(G∨Λ) is the scheme-theoretic center of G∨Λ, then there is a
natural identification Z(G∨Λ) = DΛ(π1(G)), which provides an isomorphism

(Z(G∨Λ))I = DΛ(π1(G)I),

see [ALRR23, Lemma 2.2]. Similarly, for Gad we have

(Z((Gad)∨Λ))I = DΛ(π1(Gad)I),

and by [ALRR23, Proposition 6.8] the natural morphism

(9.5) (Z(G∨Λ))I ×(Z((Gad)∨Λ))I ((Gad)∨Λ)I → (G∨Λ)I

is an isomorphism, which finishes the proof. Comparing (9.4) and (9.5) together
with the description of fixed points in centers we deduce the claim. �

Since the adjoint group of a torus is the trivial group, for which the theorem
obviously holds, we deduce in particular from Lemma 9.4 that Theorem 9.3 holds
when G is a torus. Once this is known, for general G and G, the morphism resB,G
of Proposition 6.7 defines a morphism of group schemes (T∨Λ )I → G∨Λ whose com-
position with ϕG,Λ is the natural closed immersion (T∨Λ )I → (G∨Λ)I . The former
morphism is therefore also a closed immersion.

Now, let us outline the strategy of the proof of Theorem 9.3. By Lemma 9.4 we
can assume that G is semisimple of adjoint type. The cases Λ = K,k follow from
the case Λ = O by base change using (9.2) and (9.3). If Λ = O, then we aim to
apply the following statement to the map f̃G,O : O((G∨O)I)→ O(G∨O).

Lemma 9.5 ([FS21, Lemma VI.11.3]). Let M,N be flat O-modules, and let

f : M → N

be a morphism of O-modules such that k ⊗O f is injective and K ⊗O f is an iso-
morphism. Then f is an isomorphism.

Both O-modules O((G∨O)I) and O(G∨O) = BG(O) are flat by [ALRR23, Theo-
rem 5.1(1)] and Theorem 6.1 respectively. By the proof of Proposition 9.1, we
know that ϕG,O⊗OK = ϕG,K is a closed immersion. Thus, to conclude it suffices to
check that f̃G,Λ is injective for both Λ = K,k, which by [Sta22, Tag 056A] amounts
to showing that the scheme-theoretic image of ϕG,k is (G∨Λ)I for these choices of
coefficients. This is checked in Subsection 9.3 when G has semisimple F -rank 1.

https://stacks.math.columbia.edu/tag/056A
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The general case is proven in Subsection 9.4 using constant term functors to con-
struct enough “semisimple-rank-1 Levi subgroups” in G∨Λ to ensure the schematical
dominance of ϕG,Λ for both Λ = K,k. Here the required group theory is supplied
by [ALRR23], where the case Λ = k is particularly interesting in characteristic 2.

9.3. Groups of semisimple F -rank 1. In this subsection we prove Theorem 9.3
in case G has semisimple F -rank 1, i.e. #Φs = 1.

The next statement is probably well known, although we could not find a proof
in the literature. (It is somehow implicit in [FS21, Lemma VI.11.2].) Here, for any
field k, we denote by:

• T2,k, resp. B+
2,k, resp. B−2,k, the subgroup of SL2,k consisting of diagonal

matrices, resp. upper triangular matrices, resp. lower triangular matrices;
• T2,k, resp. B+

2,k, resp. B−2,k, the subgroup of PGL2,k consisting of (images of)
diagonal matrices, resp. upper triangular matrices, resp. lower triangular
matrices

Lemma 9.6. Let k be a field.
(1) If K is a smooth connected closed subgroup of SL2,k containing T2,k, then

K is one of T2,k, B±2,k, or SL2,k;
(2) If K is a smooth connected closed subgroup of PGL2,k containing T2,k, then

K is one of T2,k, B±2,k, or PGL2,k.

Proof. We explain the case of SL2,k; that of PGL2,k can be treated similarly, or
deduced using the quotient morphism SL2,k → PGL2,k. We denote by U±2,k the
unipotent radical of B±2,k. The multiplication map

U−2,k × B+
2,k → SL2,k

is an open immersion. Its image C2,k (the “big cell”) intersects K, hence by con-
nectedness C2,k ∩ K is open and dense in K. On the other hand, by [CGP15,
Proposition 2.1.8(3)] the multiplication morphism

(U−2,k ∩K)× (B+
2,k ∩K)→ C2,k ∩K

is an isomorphism, and since K contains T2,k it follows that multiplication induces
an isomorphism

(U−2,k ∩K)× T2,k × (U+
2,k ∩K)

∼−→ C2,k ∩K.

The other statement in [CGP15, Proposition 2.1.8(3)] guarantees that U±2,k ∩K is
smooth. It is a Gm,k-stable subgroup of U±2,k, hence is either trivial or equal to U±2,k.
The resulting four possible cases lead to the four cases T2,k, B±2,k, or SL2,k. �

Finally we come to the main result of the subsection.

Proposition 9.7. Theorem 9.3 holds in case G is semisimple of F -rank 1.

Proof. By Lemma 9.4 we can (and will) assume that G is furthermore semisimple
of adjoint type. Then GF s is also semisimple of adjoint type, hence a product of
simple groups (of adjoint type). Since #Φs = 1, there are two possibilities:

(a) either GF s is a product of copies of PGL2,F s and I acts by a transitive
permutation of the factors;
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(b) or GF s is a product of copies of PGL3,F s , I permutes transitively the fac-
tors, and the stabilizer of each factor acts non trivially on that factor (via
the unique nontrivial diagram automorphism).

In case (a), G∨Λ is a product of copies of SL2,Λ permuted transitively by I, so that
we have

(9.6) (G∨Λ)I ∼= SL2,Λ.

In case (b), G∨Λ is a product of copies of SL3,Λ, and we have

(9.7) (G∨Λ)I ∼= (SL3,Λ)Z/2Z

where in the right-hand side the action is that considered in [ALRR23, §2.3].
(See [ALRR23, §2.3] for details.) Moreover, if 2 is invertible in Λ then the group
in (9.7) identifies with PGL2,Λ, see [ALRR23, Example 5.9(1)].

Now we treat the case Λ = K. As seen in the course of the proof of Proposi-
tion 9.1, in this case we know that ϕG,K is a closed immersion. Using tannakian
formalism one checks as in [BR18, Lemma 1.9.3] that G∨K is connected (using the
fact that X∗(T )I is free over Z under our present assumptions), and as in [BR18,
Lemma 1.9.4] (using Lemma 6.2) that it is reductive. This group is not a torus
since it admits simple representations whose dimension is at least 2. (This property
can e.g. be checked using the results of §6.3.) Hence ϕG,K is an isomorphism.

Now we assume that Λ = k, and denote by H the scheme-theoretic image of
ϕG,k, or in other words the spectrum of the image of f̃G,k (see the comments at
the end of §9.2). Then H is a closed subgroup scheme of (G∨k )I . The morphism
O(H) → O(G∨k ) is injective, hence H is a quotient of G∨k ; in particular, we have a
fully faithful monoidal functor

Rep(H)→ Rep(G∨k ) ∼= Perv(HkG ,k)

whose essential image is stable under subquotients. Consider the reduced subgroup
(G∨k )Ired. We will now prove that

(9.8) H ⊃ (G∨k )Ired.

(Here the right-hand side is isomorphic to SL2,k in case (a) and in case (b) when
` = 2, and to PGL2,k otherwise.)

First, we claim that H is connected. In fact, if it were not then Rep(H) would
contain a subcategory stable under tensor products and containing finitely many iso-
morphism classes of simple objects (see e.g. [BR18, Proposition 1.2.11(2)]). Hence
the same would be true for Perv(HkG ,k). As in the “classical” case (see [BR18,
Lemma 1.9.3]) this is impossible because X∗(T )I is free.

Let us note also that since the morphism (T∨k )I → (G∨k )I factors through G∨k
(see §9.2), H contains a maximal torus of (G∨k )Ired. If H does not contain (G∨k )Ired,
then Hred is a strict smooth connected subgroup containing a maximal torus; by
Lemma 9.6 it is therefore either equal to the latter subgroup, or to one of the Borel
subgroups containing it. In any case, any simple representation of Hred is invertible
in the monoidal category Rep(Hred). On the other hand, as in the proof of [BR18,
Lemma 1.14.6], for n � 0 the n-th Frobenius morphism FrnH of H can be written
as a composition

H
Frn′H−−−→ (Hred)(n) ↪→ H(n)
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where Frn′H is a quotient morphism. Choosing a nontrivial simple representation
of (Hred)(n), pulling it back to H and then to G∨k , we obtain a nontrivial simple
representation of G∨k which is invertible in the monoidal category(

Rep(G∨k ),⊗
) ∼= (Perv(HkG ,k), ?0

)
.

By the same considerations as in [BR18, Beginning of §1.9] one sees that the in-
vertible objects in Perv(HkG ,k) are the objects J!∗(λ,k) where λ ∈ X∗(T )I is
W0-stable. Since G is assumed to be semisimple of adjoint type this implies that
λ = 0; in other words Perv(HkG ,k) has no nontrivial simple invertible object, which
provides a contradiction.

Now, assume that we are in case (a), or otherwise in case (b) with ` 6= 2. Then the
group scheme (G∨k )I is smooth, so that (9.8) implies that H = (G∨k )I . Lemma 9.5
applied to the morphism f̃G,O implies that this morphism is an isomorphism. It
follows that f̃G,k = k⊗O f̃G,O is an isomorphism too, which finishes the proof.

Finally we consider case (b) when ` = 2. If K = Q2, i.e. O = Z2, then [ALRR23,
Proposition 6.9] implies that we in fact have H = (G∨F2

)I , which allows us to
conclude as above. For a general O, we have a continuous morphism of rings
Z2 → O; using the associated change-of-scalars functors (see §B.1.4) we deduce the
desired claim from the case of Z2. �

9.4. The general case. We can finally complete the proof of Theorem 9.3.

Proof of Theorem 9.3. By Lemma 9.3 we can (and will) assume that G is semisim-
ple of adjoint type. As explained at the end of §9.2, to conclude it suffices to prove
that the scheme-theoretic image of ϕG,Λ is (G∨Λ)I for Λ = K or k.

So, we finally assume that Λ is either K or k, and denote by H the scheme-
theoretic image of ϕG,Λ. As explained in §8.8, the formalism of constant term
functors gives us morphismsM∨Λ → G∨Λ for every standard Levi subgroup M ⊂ G.
(HereM is the scheme-theoretic closure of M ; see (3.1).) Applying this construc-
tion to each standard Levi subgroup Mγ attached to a simple relative root γ and
using Proposition 9.7, we deduce thatH contains each ((Mγ)∨Λ)I . Here, (Mγ)∨Λ iden-
tifies with the Levi subgroup of G∨Λ attached to the subset of simple roots whose
coroots are the inverse image of γ under (2.6), see §8.8. Therefore, the desired claim
follows from [ALRR23, Corollary 6.6]. �

Appendix A. Equivariant versus constructible perverse sheaves

In the setting considered in the body of the paper, let

Db
(L+G)(GrG ,Λ)

be the full subcategory of Db
c (GrG ,Λ) whose objects are the complexes F such that

for any i ∈ Z and λ ∈ X∗(T )+
I the sheaf Hi(F|GrλG

) is constant. Lemma A.2 below
implies that this subcategory is triangulated. It is easily seen that the perverse t-
structure on Db

c (GrG ,Λ) restricts to a t-structure on Db
(L+G)(GrG ,Λ), whose heart

will be denoted
Perv(L+G)(GrG ,Λ).

In case Λ is a field, Perv(L+G)(GrG ,Λ) is the Serre subcategory of the category of
perverse sheaves on GrG generated by the objects J!∗(λ,Λ) for λ ∈ X∗(T )+

I . It is
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clear that the functor h∗ (see (4.2)) factors through an exact functor

(A.1) Perv(HkG ,Λ)→ Perv(L+G)(GrG ,Λ).

Our goal in this appendix is to prove that (A.1) is an equivalence of categories.
This will be achieved in Proposition A.3 below. (In the body of the paper, we use
this statement through its consequence proved in Corollary A.4.)

Remark A.1. (1) Proposition A.3 is a ramified analogue of [MV07, Proposi-
tion 2.1]. Unfortunately, a direct adaptation of the proof of that result
(given in [MV07, Appendix A]; see also [BR18, §1.10.2]) presents some
technical difficulties. To bypass this problem we will give a slightly differ-
ent proof of this property (based on similar considerations) which applies
in both settings. None of the details introduced in this proof are required
elsewhere in the paper.

(2) In case Λ = K, the fact that (A.1) is an equivalence can be obtained in a
much simpler way, by observing that the same arguments as for Lemma 6.2
show that the category Perv(L+G)(GrG ,K) is semisimple.

Lemma A.2. Let λ ∈ X∗(T )+
I . The subcategory of the category of sheaves on

GrλG whose objects are the constant local systems is stable under subquotients and
extensions.

Proof. Stability under subquotients is a classical fact, known for any connected
scheme of finite type. For stability under extensions, what we need to prove is that
for any finitely generated Λ-modules M,N the natural morphism

(A.2) Ext1
Λ(M,N)→ HomDb

c (GrλG ,Λ)(MGrλG
, NGrλG

[1])

is an isomorphism.
First, assume that Λ = K or Λ = k. Then it suffices to treat the case M = N =

Λ, and the Ext1-space vanishes. On the other hand we have

HomDb
c (GrλG ,Λ)(ΛGrλG

,ΛGrλG
[1]) = H1(GrλG ; Λ),

which vanishes because GrλG is smooth (so that cohomology is dual to cohomology
with compact support up to shift) and admits a paving by affine spaces (see §2.4).

Now we consider the case Λ = O. We have

HomDb
c (GrλG ,O)(MGrλG

, NGrλG
[1]) = H1(RΓ(GrλG , RHomO(M,N))).

Here the complex RHomO(M,N) is concentrated in degrees 0 and 1; more explicitly
we have a distinguished triangle

HomO(M,N)→ RHomO(M,N)→ Ext1
O(M,N)[−1]

[1]−→ .

Using the fact that
H1(RΓ(GrλG ,HomO(M,N))) = 0

(for the same reason as above) and that GrλG is connected, applying the functor
RΓ(GrλG , ?) to this triangle we obtain an embedding

H1(RΓ(GrλG , RHomO(M,N))) ↪→ Ext1
O(M,N).

It is clear that the composition of (A.2) with this morphism is the identity morphism
of Ext1

O(M,N). Hence both of this morphisms are isomorphisms, which finishes the
proof. �
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Proposition A.3. The functor (A.1) is an equivalence of categories.

Proof. For any L+G-stable locally closed subscheme X ⊂ GrG such that |X| has
finitely many L+G-orbits, we can consider as above the categories

Perv([L+G\X]ét,Λ) and Perv(L+G)(X,Λ)

of perverse sheaves which are L+G-equivariant and constant on each L+G-orbit,
respectively, and the natural exact “forgetful” functor

Perv([L+G\X]ét,Λ)→ Perv(L+G)(X,Λ).

We will prove that this functor is an equivalence of categories for any X, which will
imply the proposition. Note that the general theory of perverse sheaves implies that
this functor is fully faithful, and that its essential image is stable under subquotients.
What we have to prove is that it is also essentially surjective, and for that it suffices
to show that any object in Perv(L+G)(X,Λ) is a quotient of an object in the image
of Perv([L+G\X]ét,Λ). In case Λ = K or Λ = k, the category Perv(L+G)(X,Λ)
is a finite-length abelian category, whose simple objects are the perverse sheaves
J!∗(λ,Λ)|X where λ ∈ X∗(T )+

I is such that |GrλG | ⊂ |X|. In case Λ = O, the same
arguments as in [RSW14, Lemma 2.1.4] show that any object is an extension of
objects which are quotients of objects of the form J!∗(λ,Λ)|X where λ satisfies
the same conditions. Hence, in any case, to conclude it suffices to prove that for
any such λ the object J!∗(λ,Λ)|X is a quotient of an object in Perv([L+G\X]ét,Λ)
whose image in Perv(L+G)(X,Λ) is projective.

We will proceed by induction on the number of orbits contained in |X|. Of
course, there is nothing to prove in case X is empty. So, we consider a nonempty
X as above, and choose some µ ∈ X∗(T )+

I such that GrµG is closed in X and such
that the claim is known for the complement X ′ of GrµG in X. The open immersion
X ′ → X will be denoted j. If λ ∈ X∗(T )+

I is such that |GrλG | ⊂ |X| and λ 6= µ

(i.e. |GrλG | ⊂ |X ′|), then as explained in §6.4 there exists a projective object P in
Perv([L+G\X ′]ét,Λ) and a surjection

P � J!∗(λ,Λ)|X′ = j∗(J!∗(λ,Λ)|X).

By induction the image of P in Perv(L+G)(X
′,Λ) is projective, and adjunction

provides a morphism
pH 0(j!P)→J!∗(λ,Λ)|X .

This morphism can be written as a composition
pH 0(j!P)→ j!∗P → j!∗

(
J!∗(λ,Λ)|X′

)
= J!∗(λ,Λ)|X

where the first morphism is surjective by definition, and the second one is also
surjective because intermediate extension functors preserve surjections. Since the
functor j! = j∗ : Perv(L+G)(X,Λ)→ Perv(L+G)(X

′,Λ) is exact, by adjunction again
the object pH 0(j!P) is projective; the problem is therefore solved for these λ’s.

It remains to treat the case λ = µ. In this case we have

J!∗(µ,Λ)|X = ΛGrµG
[dim(GrµG)].

Using the notation of §6.4, we claim that there exists a surjective morphism

PX(µ,Λ)→J!∗(µ,Λ)|X .

In fact, using Lemma 6.4 we see that

Hom(PX(µ,Λ),J!∗(µ,Λ)|X) ∼= FXG,µ(J!∗(µ,Λ)|X) = Λ.
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The element 1 ∈ Λ defines a morphism PX(µ,Λ) →J!∗(µ,Λ)|X , which is surjec-
tive in case Λ is a field because its codomain is simple, and in case Λ = O because
its image under derived tensor product with k is surjective (see Lemma 6.5).

We claim that the functor

H
〈µ,2ρ〉
Tµ∩X(X,−) : Perv(L+G)(X,Λ)→ modΛ

is exact. In fact, as noted in §6.4, for any F ∈ Perv([L+G\X]ét,Λ) we have

HkTµ∩X(X,F ) = 0

unless k = 〈µ, 2ρ〉. Since any object in Perv(L+G)(X,Λ) is an extension of objects
in Perv([L+G\X]ét,Λ), the same property holds for F ∈ Perv(L+G)(X,Λ), which
implies the desired exactness. For simplicity, this functor will also be denoted FXG,µ.

We now consider the category C constructed as in [Vil94, §1] out of the following
data:

• the categories are A = Perv(L+G)(X
′,Λ) = Perv([L+G\X ′]ét,Λ) and B =

modΛ;
• the functors F,G : A → B are

F = FXG,µ ◦ pH 0 ◦ j! and G = FXG,µ ◦ pH 0 ◦ j∗;
• the morphism T : F → G is the morphism induced by the canonical mor-

phism j! → j∗.
Explicitly, the objects in C are the quadruples (F , V,m, n) where F is an object
in Perv(L+G)(X

′,Λ) = Perv([L+G\X ′]ét,Λ), V is an object in modΛ, and

m : FXG,µ(pH 0(j!(F )))→ V, n : V → FXG,µ(pH 0(j∗(F )))

are morphisms such that nm is induced by our morphism of functors T. The mor-
phisms in this category are pairs consisting of a morphism in Perv(L+G)(X

′,Λ) and a
morphism in modΛ, which make the obvious diagram commutative. For later use we
note that the functor pH 0 ◦ j∗ takes values in the subcategory Perv([L+G\X]ét,Λ)
of Perv(L+G)(X,Λ); for F ∈ Perv(L+G)(X

′,Λ) we therefore have

FXG,µ ◦ pH 0 ◦ j∗(F ) = Hom(PX(µ,Λ), pH 0(j∗(F ))) = Hom(j∗PX(µ,Λ),F );

in other words, the functor FXG,µ ◦ pH 0 ◦ j∗ is represented by j∗PX(µ,Λ).
By [Vil94, Proposition 1.1(a)], C is an abelian category and, by [Vil94, Propo-

sition 1.2], the functor
E : Perv(L+G)(X,Λ)→ C

sending G to the quadruple

(j∗G ,FXG,µ(G ),m, n)

where m,n are the obvious morphisms (provided by adjunction) is fully faithful
and exact. (We apply this proposition with B̃ the full subcategory of perverse
sheaves supported on GrµG , which is equivalent to the category of constant sheaves
on GrµG , see Lemma A.2.) To prove that the image of PX(µ,Λ) in Perv(L+G)(X,Λ)
is projective, it therefore suffices to prove that its image in C is projective. What
we will show is that this image represents the functor

(A.3) C → modΛ

given by (F , V,m, n)→ V . This functor is clearly exact, which will imply projec-
tivity and finish the proof.
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In more concrete terms we will prove that

E(PX(µ,Λ)) = (j∗PX(µ,Λ),FXG,µ(pH 0(j!j
∗PX(µ,Λ)))⊕ Λ,m, n)

where m is the obvious embedding and n is the sum of the morphism induced by
T with the morphism

Λ→ FXG,µ(pH 0(j∗j
∗PX(µ,Λ))) = End(j∗PX(µ,Λ))

sending 1 ∈ Λ to the identity morphism. From this description, and using the
fact that j∗PX(µ,Λ) represents FXG,µ ◦ pH 0 ◦ j∗, it is not difficult to check that
E(PX(µ,Λ)) indeed represents the functor (A.3). (In case Λ is a field, this object
is the projective cover of the simple object (0,Λ, 0, 0) described in [Vil94, p. 667],
see also [MV87, p. 317].) By definition, the second component in E(PX(µ,Λ)) is

FXG,µ(PX(µ,Λ)) = End(PX(µ,Λ)),

where we use Lemma 6.4. To prove the above claim it therefore suffices to prove
that the natural morphism

FXG,µ(pH 0(j!j
∗PX(µ,Λ)))⊕ Λ

= Hom(PX(µ,Λ), pH 0(j!j
∗PX(µ,Λ)))⊕ Λ→ End(PX(µ,Λ))

given by the sum of the morphism induced by the adjunction morphism
pH 0(j!j

∗PX(µ,Λ))→PX(µ,Λ)

and the morphism Λ→ End(PX(µ,Λ)) sending 1 ∈ Λ to the identity morphism is
an isomorphism.

First we consider the case when Λ is a field, i.e. Λ = K or Λ = k. The pro-
jective object PX(µ,Λ) in the highest weight category Perv([L+G\X]ét,Λ) (see
Remark 6.6) admits a standard filtration; hence there exists an exact sequence

(A.4) F1 ↪→PX(µ,Λ) � F2

where F1 is an extension of objects J!(λ,Λ)|X where λ ∈ X∗(T )+
I is such that

|GrλG | ⊂ |X| and λ 6= µ, and F2 is a direct sum of copies of J!(µ,Λ)|X =
ΛGrµG

[dim(GrµG)]. Here we necessarily have

F1 = pH 0(j!j
∗PX(µ,Λ))

and the multiplicity of J!(µ,Λ)|X in F2 is the multiplicity of J!(µ,Λ) in PZ(µ,Λ)
(where Z ⊂ GrG is any closed subscheme as in §6.4 in which X is open), i.e. the
dimension of

Hom(PZ(µ,Λ),J∗(µ,Λ)) ∼= FG,µ(J∗(µ,Λ)) = Λ.

Applying the exact functor FXG,µ to the exact sequence (A.4) we obtain an exact
sequence

FXG,µ(pH 0(j!j
∗PX(µ,Λ))) ↪→ FXG,µ(PX(µ,Λ)) � FXG,µ(F2),

where the rightmost term is 1-dimensional. Since the identity morphism of the
perverse sheaf PX(µ,Λ) does not factor through pH 0(j!j

∗PX(µ,Λ)), we therefore
have

FXG,µ(PX(µ,Λ)) = FXG,µ(pH 0(j!j
∗PX(µ,Λ)))⊕ Λ

where the 1-dimensional factor corresponds to id ∈ End(PX(µ,Λ)). This completes
the proof in this case.
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Finally we consider the case Λ = O. Using the fact that k ⊗LO PX(µ,O) =
PX(µ,k) is perverse (see Lemma 6.5) and the vanishing property (6.5) one checks
that

k
L
⊗O FXG,µ(PX(µ,O)) = FXG,µ(PX(µ,k)),

so that in particular FXG,µ(PX(µ,O)) is free over O. Similarly, we claim that

k
L
⊗O

pH 0(j!j
∗PX(µ,O))

is perverse, and hence identifies with pH 0(j!j
∗PX(µ,k)). In fact, this follows from

the fact that PZ(µ,O) is a direct summand in PZ(O) (where Z ⊂ GrG is as above
in the proof), which admits a filtration with subquotients of the form J!(λ,O)
(see §6.5), and Lemma 6.3(2). From this claim we deduce as above that we have

k
L
⊗O FXG,µ(pH 0(j!j

∗PX(µ,O))) = FXG,µ(pH 0(j!j
∗PX(µ,k))),

hence in particular that FXG,µ(pH 0(j!j
∗PX(µ,O))) is free over O. We now have a

morphism of finite free O-modules

FXG,µ(pH 0(j!j
∗PX(µ,O)))⊕O→ FXG,µ(PX(µ,O))

whose image under the functor k ⊗O (−) is an isomorphism by the case Λ = k
treated above; it follows that this morphism itself is an isomorphism. �

Let us consider as in the proof of Proposition 9.1 the quotient map G → Gad

to the adjoint group, the induced morphism G → Gad on special parahoric group
schemes, and finally the associated map HkG → HkGad

on Hecke stacks. We also
have an induced map π1(G)I → π1(Gad)I , denoted τ 7→ τad, and for any τ a map
between the associated connected components

(A.5) HkτG → Hkτad

Gad
.

Corollary A.4. For each τ ∈ π1(G)I the map (A.5) induces an equivalence of
categories

Perv(HkτG ,Λ)
∼−→ Perv(Hkτad

Gad
,Λ).

Proof. The map GrτG → Grτad

Gad
is a universal homeomorphism by [HR23, Proposition

3.5], so induces an equivalence on categories of sheaves. The corollary is now
immediate from Proposition A.3. �

Appendix B. Étale sheaves on stacks

B.1. Constructible derived categories of stacks. In this paper we consider
constructible derived categories of étale sheaves on some stacks. In this subsection
we make a few comments on the definition of such categories, and give appropriate
references.

B.1.1. Finite coefficients. Let S be a base scheme which is the spectrum of a field,
either finite or separably closed. First, assume that Λ is a finite field, of char-
acteristic ` which is invertible on S. For any Artin stack X of finite type over
S, in [LO08a] the authors define the constructible derived category Dc(X,Λ) of
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étale sheaves of Λ-modules on X, together with their bounded versions D+
c (X,Λ),

D−c (X,Λ), Db
c (X,Λ). They also define bifunctors

(−)
L
⊗Λ (−) : D−c (X,Λ)×D−c (X,Λ)→ D−c (X,Λ),

RHomΛ(−,−) : D−c (X,Λ)×D+
c (X,Λ)→ D+

c (X,Λ)

and, for an S-morphism f : X → Y between such stacks, push/pull functors

f∗ : D+
c (X,Λ)→ D+

c (Y,Λ), f! : D
−
c (X,Λ)→ D−c (Y,Λ),

f∗ : Dc(Y,Λ)→ Dc(X,Λ), f ! : Dc(Y,Λ)→ Dc(X,Λ).

They prove that these functors satisfy the familiar properties usually gathered under
the term “six functors formalism,” with the exception of the base change theorem,
for which only weaker versions are obtained.

A more general formalism is constructed in [LZ17b], based on the theory of
∞-categories. (This does not require assumptions on S.) Passing to homotopy
categories in their construction one recovers the categories of [LO08a] in the setting
above, see [LZ17b, §6.5]. Their constructions also provide alternative constructions
for the push/pull functors (assuming f is quasi-separated for the functor f∗) and
the other functors considered above, and they show that they do satisfy the base
change theorem in its usual form.

By construction the (bi)functors f∗, f !, RHomΛ(−,−) and (−)⊗LΛ (−) restrict
to bounded constructible categories. For the functors f∗ and f! this is not always
true (e.g. for the natural morphism pt → pt/Gm), but it is in case f is obtained
from an equivariant morphism of schemes by passing to quotient schemes (with
respect to the action of an affine group scheme of finite type). This is the only case
we consider in the body of the paper.

In [LO09], the authors explain the construction of the perverse t-structure (as-
sociated with the middle perversity) on the category Db

c (X,Λ). See also [LZ17a,
§3] for an alternative construction.

B.1.2. Adic coefficients. We continue with the geometric setting above, and with
our prime number ` invertible on S, but take now for Λ the ring of integers in a
finite extension of Q`. In [LO08b] the authors explain how to define for any Artin
stack of finite type X the constructible derived category Dc(X,Λ) of étale sheaves
of Λ-modules on X, together with their bounded versions D+

c (X,Λ), D−c (X,Λ),
Db

c (X,Λ). They also define bifunctors (−)⊗LΛ (−) and RHomΛ(−,−) and, for any
S-morphism f : X → Y between such stacks, push/pull functors f∗, f!, f∗ and f !

as above. They prove that these functors satisfy all the expected properties, except
for the base change theorem.

A more general formalism is constructed in [LZ17a], based on the theory of ∞-
categories; see in particular [LZ17a, §2.1 and §2.3]. Passing to homotopy categories
in their construction one recovers the categories of [LO08b], see [LZ17a, §2.5]. Their
constructions also provide alternative constructions for the push/pull functors (as-
suming f is quasi-separated for the functor f∗) and the bifunctors considered above,
and they show that they do satisfy the base change theorem in its usual form.

The same comments as above apply regarding restrictions to bounded derived
categories. In the case X is a scheme, the category Db

c (X,Λ) is equivalent to the
version defined by Deligne, as explained in [LO08b, §3.1].
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In this setting also we have a perverse t-structure (for the middle perversity), as
explained in [LO09] and in [LZ17a, §3].

B.1.3. Characteristic-0 coefficients. We consider once again the geometric setting
above and our prime number `, and take for Λ a finite extension of Q`. For an
Artin stack of finite type X, one can define the derived category Dc(X,Λ) fol-
lowing [LO08b, Remark 3.1.7] (see also the discussion in [Zhe15, §6]). Namely,
denoting by Λ0 the ring of integers in Λ, one defines Dc(X,Λ) as the Verdier quo-
tient of Dc(X,Λ0) by the triangulated subcategory consisting of complexes all of
whose cohomology objects are annihilated by a power of a uniformizer. One can
make similar definitions for the bounded versions.

We will denote by

Λ⊗Λ0
(−) : Db

c (X,Λ0)→ Db
c (X,Λ)

the quotient functor; it has the property that for any complexes F ,G ∈ Db
c (X,Λ0)

we have a canonical identification

Λ⊗Λ0 HomDb
c (X,Λ0)(F ,G )

∼−→ HomDb
c (X,Λ)(Λ⊗Λ0 F ,Λ⊗Λ0 G ).

The six operations for sheaves with coefficients in Λ0 induce functors between
the versions for Λ, which we will denote in a similar way, and these functors satisfy
the same properties. Moreover, by construction the functor Λ ⊗Λ0

(−) commutes
with all sheaf operations. Finally we have a perverse t-structure in this case too,
such that the functor Λ⊗Λ0

(−) is t-exact.

B.1.4. Change of scalars. An important role in our constructions is played by some
“change of scalars” functors, which are defined as follows. First we consider an
extension of finite fields Λ → Λ′. For such data, and for any Artin stack X as
above, as explained in [LZ17b, §6.2]8 there exist natural adjoint functors

Λ′ ⊗Λ (−) : Db
c (X,Λ)→ Db

c (X,Λ′), Db
c (X,Λ′)→ Db

c (X,Λ)

which we will call extension and restriction of scalars, respectively. (The second
functor will be given no notation.) By construction these functors commute with
all sheaf-theoretic functors, and they are t-exact for the perverse t-structures.

Next we consider an extension between finite extensions of Q`, and the induced
morphism Λ → Λ′ between the rings of integers. This morphism induces a mor-
phism between the associated diagrams involved in the m-adic formalism of [LZ17a,
§2], and for any stack X as above we have associated adjoint functors

Λ′ ⊗Λ (−) : Db
c (X,Λ)→ Db

c (X,Λ′), Db
c (X,Λ′)→ Db

c (X,Λ).

Once again, these functors commute with all sheaf-theoretic constructions in the
obvious way, and they are t-exact for the perverse t-structures. (We also have
similar functors for the fraction fields of λ and Λ′, but they will not be considered
in this paper.)

Finally, we consider the case when Λ is the ring of integers in a finite extension
of Q`, and Λ′ is its residue field. The definition of Db

c (X,Λ) involves the “ringed
diagram” (N,Λ•) in the notation of [LZ17a, §2.1]. There exists a natural morphism

8It is not stated explicitly in [LZ17b] that these functors send constructible complexes to
constructible complexes. However, by definition it suffices to prove this property in the case of
schemes, where it is clear. Similar comments apply for the variants considered below.
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from this ringed diagram to the ringed diagram ({0},Λ′), and associated with this
diagram we have natural adjoint functors

Λ′
L
⊗Λ (−) : Db

c (X,Λ)→ Db
c (X,Λ′), Db

c (X,Λ′)→ Db
c (X,Λ).

Here again, these functors commute with all sheaf-theoretic constructions in the
obvious way. The right-hand functor is t-exact for the perverse t-structures, but
the functor Λ′ ⊗LΛ (−) is only left t-exact.

B.1.5. Nearby cycles. The last ingredient from (étale) sheaves theory we use in the
paper is an appropriate version of the nearby cycles functor. (See Remark 8.4 for the
relation with more standard constructions.) First we assume that Λ is a finite field.
Let R be an absolutely integrally closed valuation ring of rank 1, set S := Spec(R),
and denote by s and η the special and generic points in S respectively. (See §8.4
for an example of this setting; in this example the scheme playing the role of S is
denoted S, and the generic point is denoted η.) Given an Artin stack of finite type
X over S, we set

Xs := X ×S s, Xη := X ×S η,
and consider the obvious morphisms

i : Xs → X, j : Xη → X.

We then set
Ψ := i∗j∗ : D(Xη,Λ)→ D(Xs,Λ),

where the derived categories of sheaves we consider here are the categories denoted
Dcart(Xlis−ét,Λ) in [LZ17b]. It follows from [HS23, Corollary 4.2] that this functor
restricts to a functor

Db
c (Xη,Λ)→ Db

c (Xs,Λ).

By [HS23, Lemma 6.3] this functor is t-exact for the perverse t-structures. (The
authors in [HS23] work with schemes and not with stacks, but the properties we
consider here can be tested on schemes.)

The same constructions can be considered for the other choices of coefficients
considered in §§B.1.2–B.1.3.

B.2. A semismallness criterion. Let k be a separably closed field, and let X,
Y be k-schemes of finite type. We assume we are given some finite sets A and B
any, for any α ∈ A, resp. β ∈ B, a smooth and irreducible locally closed subscheme
Xα ⊂ X, resp. Yβ ⊂ Y , such that

|X| =
⊔
α∈A
|Xα|, resp. |Y | =

⊔
β∈B

|Yβ |,

and such that the closure of each stratum is a union of strata. We will denote by
jα : Xα → X and jβ : Yβ → Y the inclusions. Recall that a morphism of schemes
f : X → Y is said to be:

• stratified locally trivial if for any α ∈ A the subset f(Xα) is a union of
strata in Y and if moreover for any α ∈ A and β ∈ B such that Yβ ⊂ f(Xα)
the restriction of f to a morphism f−1(Yβ) ∩Xα → Yβ is an étale locally
trivial fibration;

• stratified semismall if for any α ∈ A, β ∈ B and y ∈ Yβ we have

(B.1) dim(f−1(y) ∩Xα) ≤ 1
2 (dim(Xα)− dim(Yβ)).
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It is well known that if f is proper, stratified locally trivial and stratified semi-small,
then the push-forward functor f∗ (for any ring of coefficients as considered in the
paper) sends perverse sheaves on X that are constructible with respect to the given
stratification of X to perverse sheaves on Y that are constructible with respect to
the given stratification on Y . (See, for instance, [MV07, Lemma 4.3] or [BR18,
Proposition 1.6.1].)

It turns out that this statement has a partial converse, which we will now explain.
Let ` be a prime number that is invertible in k, and denote by K a finite extension
of Q`. Assume that the following conditions are satisfied:

• for any α, α′ ∈ A and any n ∈ Z the sheaf

H n((jα′)
∗(jα)∗KXα)

is constant.
• for any α ∈ A we have H1(Xα;K) = 0.

Then as in [BBDG82, §§2.2.9–2.2.18] one can consider the full triangulated sub-
category Db

A(X,K) of Db
c (X,K) whose objects are the complexes F such that for

any n ∈ Z and α ∈ A the sheaf H n((jα)∗F ) is constant. The perverse t-structure
on Db

c (X,K) restricts to a t-structure on Db
A(X,K); in particular, for any α ∈ A

we have the intersection cohomology complex IC (Xα,K) ∈ Db
A(X,K) associated

with the constant local system on Xα, which is a simple perverse sheaf. Similarly,
under the analgous assumptions on Y and its stratification, one can consider the
category Db

B(Y,K) and its perverse t-structure.
Let us assume that both of these conditions are satisfied, and consider a mor-

phism f : X → Y .

Lemma B.1. Let f : X → Y be a morphism of k-schemes, and assume that the
following conditions are satisfied:

• for any α ∈ A, β ∈ B and n ∈ Z the sheaf

H n((jβ)∗f!IC (Xα,K))

is constant (in other words, for any α ∈ A the complex f!IC (Xα,K) be-
longs to Db

B(Y,K));
• for any α ∈ A the complex f!IC (Xα,K) is a perverse sheaf.

Then f is stratified semismall.

Proof. We need to prove the inequality (B.1) for any α ∈ A, β ∈ B and y ∈ Yβ . We
proceed by induction on α, with respect to the order given by inclusions of closures
of strata. Let ∂Xα := Xα r Xα, so that we can assume the claim is known for
any α′ such that Xα′ ⊂ ∂Xα. Fix also β ∈ B and y ∈ Yβ . The assumption that
f!IC (Xα,K) is perverse implies that the K-vector space

Hj
(
(f!IC (Xα,K))y

)
= Hjc(f

−1(y),IC (Xα,K)|f−1(y))

vanishes unless j ≤ −dim(Yβ). On the other hand, IC (Xα,K) is supported on
Xα, and its restriction to Xα is KXα [dim(Xα)]. We deduce a long exact sequence

· · · → Hj−1
c (f−1(y) ∩ ∂Xα,IC (Xα,K))→ Hj+dim(Xα)

c (f−1(y) ∩Xα;K)

→ Hjc(f
−1(y),IC (Xα,K))→ Hjc(f

−1(y) ∩ ∂Xα,IC (Xα,K))→ · · ·
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For any α′ ∈ A such that Xα′ ⊂ ∂Xα, the complex (jα′)
∗IC (Xα,K) is concen-

trated in degrees ≤ −dim(Xα′)− 1, and by induction we have

dim(f−1(y) ∩Xα′) ≤ 1
2 (dim(Xα′)− dim(Yβ)).

It follows that the space Hjc(f
−1(y) ∩ ∂Xα,IC (Xα,K)) vanishes unless

j ≤ dim(Xα′)− dim(Yβ)− dim(Xα′)− 1,

i.e. unless
j ≤ −dim(Yβ)− 1.

(Here we use the fact that cohomology with compact supports of a scheme of finite
type is concentrated in degrees at most twice the dimension of the scheme.)

Now, assume for a contradiction that

d := dim(f−1(y) ∩Xα) > 1
2 (dim(Xα)− dim(Yβ)).

Then we have an injection

H2d
c (f−1(y) ∩Xα;K) ↪→ H2d−dim(Xα)

c (f−1(y),IC (Xα,K))

since H2d−dim(Xα)−1
c (f−1(y)∩∂Xα,IC (Xα,K)) = 0. The left-hand side is nonzero,

and hence so is H2d−dim(Xα)
c (f−1(y),IC (Xα,K)), which implies that

2d− dim(Xα) ≤ −dim(Yβ),

a contradiction. �

Remark B.2. The principle expressed in Lemma B.1 is mentioned in [MV07, Re-
mark 4.5], and was explained to the fourth named author by I. Mirković a long
time ago. It justifies [BR18, Remark 1.6.5(2)], which explains that the stratified
semismallness claim needed in the “classical” geometric Satake equivalence can be
deduced from a claim about convolution of intersection cohomology complexes over
Q`, which itself can be deduced from the results of [Lus83].
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