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1. Introduction

In the first installment of your journey through the sometimes monstruous world of
algebraic geometry, you learned some of the fundamental notions of the subjects. This
includes, but is likely not limited to, sheaves, i.e., the rigorous means by which we glue
functions on spaces, and schemes, i.e., the rigorous means by which we glue rings into
spaces. You spent a lot of time learning about different geometric properties of schemes
involving dimensions, immersions, properness, flatness, etc.

The goal for this second part is to look instead at cohomological features in algebraic
geometry, more concretely, coherent cohomology of schemes. Recall that in algebraic
topology, one is interested in the study of homology Hn(X,Z) and cohomology groups
Hn(X,Z) of a topological space X with Z-coefficients. These invariants are important
because they allow us to distinguish topological spaces up to homotopy. In algebraic
geometry, there is a similar interest in understanding the cohomology groups Hn(X,F)
of a quasi-coherent sheaf F on a scheme X. We will explain the abstract framework
needed to define these invariants, the various finiteness and continuity properties they
enjoy under favorable situations, as well as how to compute them in concrete situations.
The ultimate goal of the course is to explain Serre duality for proper smooth varieties
over fields, which plays the same role for coherent cohomology that Poincaré duality does
for singular cohomology.

The first chapter in our series covers infinitesimal properties. Last semester, you saw
what a smooth map f : X → Y of schemes is, and studied their fibers in detail. A special
class of smooth maps that one has to pay special attention to are those of dimension
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0, also known as étale maps. They generate a very important topology that lead to
a breakthrough in the late 60s/early 70s towards the Weil conjectures. Our approach
to smoothness this time will center around the key notion of differential sheaves ΩX/Y ,
certain quasi-coherent sheaves on X that govern OY -linear derivations of OX towards
arbitrary OX -modules. Another special focus will lie in characterizing smoothness and
étaleness via lifting criteria along infinitesimal thickenings. We can summarize our main
findings as follows.

Theorem 1.1. The following properties hold

(1) A map f : X → Y of schemes is smooth if and only if it is flat, locally of finite
presentation, and with regular geometric fibers.

(2) A map f : X → Y of schemes is étale if and only if it is flat, locally of finite
presentation, and with discrete and reduced geometric fibers.

(3) If f is smooth, then ΩX/Y is a locally free OX-module of rank given by the di-
mension of the fibers of f .

(4) If f is étale, then ΩX/Y = 0.
(5) If f is finitely presented and formally smooth (i.e., it has the left lifting property

against any ring map with nilpotent kernel), then f is smooth.
(6) If f is finitely presented and formally étale (i.e., the lifts above are unique), then

f is étale.

It is unfortunate that there is no direct criterion for smoothness in terms only of ΩX/Y .
If we wanted to do this, we would have to use an object of the derived category Dqc(X)
called the cotangent complex LX/Y , which is isomorphic to ΩX/Y [0] exactly when f is
smooth. In this course, we will try our best to avoid diving into derived methods, however
we will not shy away from mentioning their existence, especially when it would lead to
a more neat proof. Alongside smooth and étale maps, we will also look at unramified
maps, but it should be made clear to all of you that these are much less important.

The next topic that we will handle will be homological algebra. This might disappoint
some of you and appear like a dry subject, but it is not possible to discuss cohomology
seriously without the rigorous tools required to defining it. The main idea in the subject
goes more or less as follows: in algebraic geometry, one encounters plenty of functors
that are either left or right exact, but not actually exact, such as the tensor product ⊗,
the Hom functor, or the global sections functor Γ. This is quite a sad state of affairs,
as it prevents us from computing the values of these functors via short exact sequences.
However, we know that if we restrict to injectives I, then left exact functors F suddenly
become exact. So, the solution is to resolve every object of our abelian category A→ I•

by injectives, then look at the cohomology groups of the complex F (I•). This turns out
to be independent of the choice of an injective resolution and defines the left derived
functors of F .

Then, we will specialize this discussion to the category of quasi-coherent sheaves M
on schemes X, whose definitions and basic properties will be reviewed. For projective
schemes X, there is a nice construction of quasi-coherent sheaves in terms of graded
modules, and we will cover these in some detail. The next order of business is coherent
cohomology, so we define the cohomology groups H i(X,M) in terms of our homological
machinery from the previous chapter. There is a lot to know about these groups, and we
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will compute them explicitly for line bundles on the projective space Pnk over a field k.
We summarize now some of the main features of coherent cohomology that we will look
at:

Theorem 1.2. The following properties hold:

(1) Let A be a ring, X be a proper A-scheme, and M be a coherent sheaf on X.
Then, H i(X,M) is a finite A-module.

(2) Let L be an ample line bundle. Then H i(X,M⊗ Lj) vanishes for i > 0 and
j � 0.

(3) Assume M is A-flat. Then, the function s 7→ dimκ(s)H
i(Xs,Ms) on Spec(A)

with Xs andMs standing for the fibers over s, is upper semicontinuous.

The first property is called finiteness of cohomology for proper morphisms and it
ensures that we can have a good control over them. As you can probably guess, affines
have vanishing higher cohomology, but quasi-affines can have a lot of higher cohomology
(try out A2

k \ {0}). This is one of the main reasons why algebraic geometers love proper
maps so much, because we can try to bound the ranks of their cohomology groups and
it is much easier to fabricate situation where most of them vanish to suit our purposes.
Serre vanishing is the main example of such a situation described in the second item. We
need to use line bundles L, i.e., locally free sheaves of rank 1: they hahave multiplicative
inverses and are sometimes called invertible sheaves. Fix an ample line bundle, meaning
a power of it is the pullback of O(1) along a closed immersion X → PnA (in particular, X
has to be projective). Then, we can make the higher cohomology of any coherent sheaf
disappear by means of tensoring with large powers of L. The final property mentioned
above gives some constraints on the behavior of fiber dimensions of cohomology groups
as we let points vary: while it is not true that the function is constant, we can show
that the pre-image of [0, c] for any non-negative integer is actually open. One can say
more about the Euler characteristic χ(X,M) =

∑
(−1)iH i(X,M), which is constant on

fibers. The Euler characteristic is a fundamental invariant that we will revisit below in
the Riemann–Roch formula.

We plan on discussing also the topic of sites and descent. Long ago, Grothendieck had
the decisive idea that one can generalize the notion of topology by sieving our space with
charts that are not local isomorphisms. An example of this would be flat covers, which
lead to the so-called fppf and fpqc covers. It is very natural to ask then if quasi-coherent
sheaves are also sheaves for these new topologies. This question will lead us to consider
glueing data for quasi-coherent sheaves along an fpqc cover X → Y , and then wonder
how to descend them to an actual quasi-coherent sheaf on Y . We will also show which
properties of morphisms are local for which topologies. Descent plays an important role
in proving flat base change for coherent cohomology.

As we saw above, line bundles are extremely important in algebraic geometry, and
there is a lot of effort put into understanding their cohomology in the projective case.
We will study the Picard group Pic(X) of line bundles on a scheme and relate it to
divisors, i.e., codimension 1 cycles of X. Algebraic cycles are key objects in modern
algebraic geometry, and some of the most important open conjectures in the field, such
as the Hodge and the Tate conjecture revolve around understanding their contribution
to Betti cohomology. Then, we will restrict our attention to projective curves C, where a
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lot of these concepts become rather simple, and compute the Euler characteristic of line
bundles.

Theorem 1.3. Let C be a projective smooth curve over a field k, and D be a divisor on
C. Then, χ(C,O(D)) = deg(D) + 1− g(C), where the degree deg(D) is the sum of zeros
and poles with multiplicity of D and the genus g(C) = dimkH

1(C,O).

This gives a very explicit formula for computing the Euler characteristic of any line
bundle L on C. Note that if we let k = C, then there is a Riemann surface Can obtained
by analytifying C, and g(C) is counting the number of holes in the resulting chain of
aglutinated donuts. You could still complain that knowing χ(C,L) still leaves us hanging
if we want to compute either H0(C,L) or H1(C,L). We will have learned that in certain
situation, such as if the degree is strictly negative or quite large relatively to g(C), then we
can ensure the vanishing of H0 (resp. H1). We should also mention that there is a higher
dimensional analogue of the Riemann–Roch formula, which is called the Grothendieck–
Riemann–Roch formula (and builds on work of Hirzebruch on complex manifolds), but
it goes beyond the scope of our course.

There is an underlying symmetry going on in the Riemann–Roch formula, which we
will explain towards the end of the course. As you should already know by this point,
mathematicians are fascinated with duality. Dualizing objects or maps can sometimes
lead to a simplification of the original problem, we often encounter natural pairing maps
between different but related quantities, etc. Poincaré duality, for instance, leads you to
expect some type of palyndromic nature in the homology of closed real manifolds. In
algebraic geometry, the corresponding notion is called Serre duality.

Theorem 1.4. Let k be a field and X be a proper smooth k-variety of dimension n. We
let ωX/k = ∧nΩX/k be the top exterior power of the differential sheaf. Then, there is a
canonical isomorphism H i(X, E)∨ ' Hn−i(X,ωX/k ⊗E∨) for any vector bundle E on X.

Here, a vector bundle E is a locally free coherent sheaf and ∨ denotes either the dual
vector space or the dual vector bundle. Applied to curves, Serre duality tells us that
dimkH

1(C,O(D)) = dimkH
0(C,O(KC − D)), where KX is a canonical divisor for C,

i.e., such that O(KC) = ωC/k, and this often yields more concrete information revolving
around the Riemann–Roch formula. Our proof of Serre duality uses cup product to study
the top cohomology group Hn(X,ωX), and then we need to define a trace isomorphism
with k. For this, we will perform some reductions to the case when X = Pnk , so that there
is no simple local definition of this map. Recent developments by Clausen–Scholze made
it possible to define the local trace maps, but one should note that because cohomology
on opens is usually finite, the duality in this theory takes place in some kind of complete
topological sheaves they called rigid sheaves. As beautiful as this construction might
be, it is too damned involved for us to really scratch its surface. Another more classical
generalization of Serre duality is the so called Grothendieck–Serre duality: it uses the
derived category, it applies to possibly non-smooth finitely presented maps of schemes
f : X → Y with the main player being a certain canonical complex living in Dqc(X).

If time permits, we might be able to look at formal schemes, which are glued out of
complete topological rings, prove the theorem on formal functions, a.k.a., formal GAGA
for proper schemes, and then discuss Zariski’s main theorem that places some severe
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constraints on how quasi-finite maps can look like and where certain completions play a
decisive role. But this is very far from a promise, and quite unlikely!

1.1. Book sources. We recommend you to use the following 3 book sources besides these
notes: Liu, Görtz–Wedhorn, and Vakil. We highly recommend consulting the Stacks
Project, but only for technical minutia. We do not recommend using Hartshorne at all:
a lot of respect is owed to this book for educating generations of algebraic geometers,
but it has since become quite dated. Similarly, one should if possible avoid consulting
the historically significant EGAs, because it is much more tricky to track down a result
among all the humongous volumes.

2. Infinitesimal properties

2.1. Conormal sheaf of an immersion. Let i : Z → X be a closed immersion of
schemes with defining ideal sheaf I. We consider the pullback i∗I = I/I2 regarded as
an OZ-module. More generally, we have the following definition.

Definition 2.1. Let i : Z → X be an immersion and U ⊂ X is an open such that i
factors through a closed immersion Z → U . The conormal sheaf CZ/X is the quasi-
coherent OZ-module I/I2 described above for Z → U .

Remark 2.2. There is also a notion of normal sheaf

NZ/X = HomOZ
(CZ/X ,OZ) (2.1)

obtained by dualizing CZ/X . This provides an algebraic analogue of the normal bundle
of a manifold embedding. The reason we work with the conormal objects is that unlike
their duals they behave well under base change.

It is clear from the definition that, for any affine open Spec(R) = U ⊂ X such that
I(U) = I, we get Γ(Z ∩ U, CZ/X) = I/I2.

Lemma 2.3. Let i : Z → X be an immersion of schemes. Given a map g : X ′ → X, we
denote by i′ : Z ′ → X ′ the resulting immersion, resp. f : Z ′ → Z obtained by base change.
There is a natural surjection of OZ′-modules

f∗CZ/X → CZ′/X′ (2.2)

which is an isomorphism if g is flat.

Proof. We may assume i is a closed immersion after replacing X by an adequate open.
We are also allowed to work locally on the source and target of g, and hence assume that
every scheme is affine. Clearly, any power of the ideal I ⊂ R defining Z ⊂ X maps to
the same power of I ′ = im(I ⊗R R′ ⊂ R′), so we have a map I/I2 ⊗R→ I ′/I ′2. This is
clearly surjective, and in the flat case we get that In ⊗R R′ → (I ′)n is an isomorphism
for any n, which forces it to also be injective. �

Lemma 2.4. Let Z i−→ Y
j−→ X be immersions of schemes. Then there is a canonical

exact sequence
i∗CY/X → CZ/X → CZ/Y → 0 (2.3)

where the maps come from Lemma 2.3 and i : Z → Y is the first morphism.
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Proof. This reduces immediately to the case where i and j are closed immersions, and
all the involved schemes are affines. Passing to global sections, let C → B → A be
the corresponding ring surjections. Set I = Ker(B → A), J = Ker(C → A) and
K = Ker(C → B) so that I = J/K. This yields an exact sequence

K/K2 ⊗B A→ J/J2 → I/I2 → 0 (2.4)

of A-modules, which translates into the desired statement. �

2.2. Sheaves of differentials. In this subsection, we introduce the notion of differen-
tials on schemes. First, we need to understand this notion at the level of rings.

Definition 2.5. Let A→ B be a ring map and let M be a B-module. An A-derivation
into M is an A-linear map D : B → M satisfying the Leibniz rule: D(ab) = aD(b) +
bD(a).

We have a natural structure of B-module on the set DerA(B,M) of A-linear derivations
D : B → M . Given a B-linear map α : M → N , we get an induced B-linear map
DerA(B,M)→ DerA(B,N) induced by post-compositing with α.

Definition 2.6. Let A → B be a homomorphism of rings. The module of differentials
ΩB/A is the B-module representing the functor M → DerA(B,M).

This means that we have natural isomorphisms HomB(ΩB/A,M) ' DerA(B,M), and
applied to the identity map of ΩB/A it yields a universal A-derivation dB/A : B → ΩB/A,
provided ΩB/A actually exists. This is what we now verify.

Lemma 2.7. The module of differentials ΩB/A always exists.

Proof. Consider the free B-module B⊕B on the elements of B itself with the canonical
basis elements denoted by eb. We want to realize ΩB/A as a quotient of this free B-
module, so we have to impose the relations coming from linearity and the Leibniz rule.
Consider the submodule generated by either eb+b′ − eb − eb′ or ebb′ − beb′ − b′eb for every
pair (b, b′) ∈ B2, and finally ea for any a ∈ A. We let ΩB/A be the corresponding quotient
and define dB/A : B → ΩB/A via b 7→ eb. This is an A-linear derivation by the relations
imposed on ΩB/A. More generally, assume d : B →M is an A-linear derivation. We can
define a B-linear map B⊕B → M taking eb to d(b). Applying the relations satisfied by
A-linear derivations, we see that this map factors through ΩB/A, and it is also clear that
this is the only map that works. �

Example 2.8. Let B = A[x1, . . . , xn]. Then ΩB/A is a free B-module on the dB/A(xi).
Indeed, it is straightforward to check that an arbitrary collection of elements mi ∈ M
for i = 1, . . . , n induces a unique A-linear derivation d : B → M with d(xi) = mi: it is
given by d(p) =

∑
i(∂p/∂xi)mi for any p ∈ A[x1, . . . , xn] due to the Leibniz rule.

Lemma 2.9. Let
A B

A′ B′

(2.5)
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be a commutative diagram of rings. There is a canonical map

ΩB/A ⊗B B′ → ΩB/′A′ (2.6)

of B′-modules. If (2.5) is cocartesian, then (2.6) is an isomorphism.

Proof. The universal A′-derivation dB′/A′ : B′ → ΩB/′A′ restricts to an A-derivation B →
ΩB′/A′ , and hence we get a B-linear map ΩB/A → ΩB/′A′ , as required. If the diagram is
a pushout, it suffices to show that dB/A⊗B B′ is the universal A′-derivation of B. Given
a derivation d : B′ → M ′, we can restrict it to B and get a B-linear map ΩB/A → M ′.
Now, its B′-linearization ΩB/A ⊗B B′ → M ′ composed with dB/A ⊗B B′ recovers d by
construction. �

The previous lemma already shows that the module of differentials is local on the
target and could be used with some care to construct the quasi-coherent sheaf ΩX/S for
a map X → S of schemes. We will define it instead as the conormal sheaf of the diagonal
X → X ×S X after the next two lemmas.

Lemma 2.10. Let A → B → C be maps of rings. Then, there is a canonical exact
sequence

ΩB/A ⊗B C → ΩC/A → ΩC/B → 0 (2.7)

of C-modules.

Proof. We already saw how to produce the first map in Lemma 2.9 and the second one is
quite similar. By the presentation of differential modules Ω, we see that the generators
dc of ΩC/B are in the image of those of ΩC/A. The new relations are obtained by the
vanishing of db for b ∈ B and hence lie in the image of ΩB/A. �

Lemma 2.11. Let p : B → C be a ring epimorphism with kernel I and A → B be an
arbitrary ring map. There is a canonical exact sequence

I/I2 → ΩB/A ⊗B C → ΩC/A → 0 (2.8)

of C-modules. If p has a section, then (2.8) extends to a split short exact sequence.

Proof. If we consider the derivation dB/A : I → ΩB/A, then I2 gets sent to IΩB/A by the
Leibniz rule, so this yields the first arrow. The second arrow comes from Lemma 2.9 and
is certainly surjective as p is. Clearly the two maps compose to 0. Using the presentation
of ΩC/A, we can check that the kernel of the second arrow is generated by di with i ∈ I
as desired. Suppose now that p admits a section C → B and write B = C ⊕ I. The
functoriality of differential modules implies that the right arrow splits. On the other
hand, the projection B → I/I2 is easily checked to be a derivation, and thus we get a
section also on the left side (implying injectivity on the left as well). �

The following lemma gives a very clean definition of the sheaf of differentials without
refering to derivations.

Lemma 2.12. Let A→ B be a map of rings. There is a canonical isomorphism between
ΩB/A and the conormal module I/I2 for the multiplication map B ⊗A B → B.
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Proof. We have a short exact sequence

0→ I/I2 → ΩB⊗AB/B ⊗B⊗AB B → ΩB/B → 0 (2.9)

because the multiplication map B ⊗A B → B admits a section by any of the factor
inclusions. Clearly, ΩB/B = 0 as all the generators db must vanish. Also, by base change,
we have ΩB⊗AB/B ' ΩB/A⊗B (B⊗AB), so the middle term identifies with ΩB/A again,
and we get the desired isomorphism. �

In particular, we see immediately that if A→ B is an immersion, then ΩB/A vanishes,
and if A→ B is finitely presented, so is the B-module ΩB/A.

Definition 2.13. Let f : X → S be a morphism of schemes. We define its sheaf of
differentials by ΩX/S := CX/X×SX .

It is now clear that if f restricts to a map of affine opens U → V , then ΩX/S(U) =
ΩB/A, where B := Γ(U,OX) and A := Γ(V,OS). Therefore, this is truly a sheafified ver-
sion of the module of differentials, and thus all exact sequences of modules of differential
globalize to sheaves of differentials.

Corollary 2.14. Let f : X → S be a morphism of schemes admitting a section s : S → X.
Then, we get a canonical isomorphism s∗ΩX/S ' CS/X .

Proof. Apply Lemma 2.11 to the immersion s : S → X and the map f : X → S. Then the
right term ΩS/S vanishes and we get an surjection CS/X → s∗ΩX/S . Since the immersion
s is split by f , we conclude that this is an isomorphism. �

Remark 2.15. In particular, if S is the spectrum of a field k, and x a k-valued point
of X, then we see that the fiber x∗ΩX/k is the k-linear dual of the tangent space TX,x.
Indeed, the latter had been defined as the k-linear dual of Cx/X .

We complete our collection of right exact sequences as follows:

Lemma 2.16. Let i : Z → X and j : Z → Y be immersions and f : X → Y a map with
f ◦ i = j. Then, the sequence

CZ/Y → CZ/X → i∗ΩX/Y → 0 (2.10)

is exact.

Proof. Exactness on the right follows from Lemma 2.11 because ΩZ/Y vanishes as Z → Y
is an immersion. Exactness in the middle will be proved later with the help of the
cotangent complex. �

2.3. Flat morphisms. In this subsetion, we will discuss the notion of flatness, which is
quite particular to algebraic geometry and has no classical differential geometric analogue.
In order to do this, we need to first discuss the corresponding notion over rings.

Recall that the tensor product functor N 7→M ⊗RN commutes with colimits and it is
only right exact. The notion of flatness is meant to identify a fix for the lack of exactness.

Definition 2.17. Let A be a ring and M be an A-module. Then, an A-module M is
called flat if the functor N 7→M ⊗A N is exact. It is moreover faithfully flat if the same
functor is conservative, i.e., it reflects isomorphism.
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We call a ring map A→ B (faithfully) flat if B has the same property as an A-module.
Localizations B = S−1A are clearly flat. We review some basic properties of flat modules.

Lemma 2.18. Let A be a ring and Let I, J ⊂ A be ideals. Let M be a flat A-module.
Then IM ∩ JM = (I ∩ J)M .

Proof. Tensor the exact sequence 0 → I ∩ J → R → R/I ⊕ R/J with M and use that
the kernel of M →M/IM ⊕M/JM is equal to IM ∩ JM . �

Lemma 2.19. (Faithful) flatness is stable under composition and base change.

Proof. Composition is clear, because it preserves exactness and conservativity of functors.
As for base change, the isomorphism N ⊗A′ B′ ' N ⊗A B shows that we can identify
the base changed tensor functor with the original one precomposed with the forgetful
functor ModA′ → ModA, which is also exact and conservative. �

Remark 2.20. It is reassuring to know that to check flatness of an A-module M , it
suffices to check injectivity of I ⊗AM →M for finitely generated ideals I ⊂ A.

Lemma 2.21. Let A → B be a faithfully flat ring map, M be an A-module, and set
N = M ⊗A B. Then M is A-flat if and only if N is B-flat.

Proof. One of the directions was seen already. If N is B-flat, then ⊗AM becomes exact
after composing with the conservative ⊗AB, thus M is A-flat. �

Lemma 2.22. Let A→ B → C be ring maps. If A→ C is (faithfully) flat and B → C
is faithfully flat, then A→ B is also (faithfully) flat.

Proof. We use the same idea as in the previous lemma. The functor ⊗AB becomes exact
(and conservative) after tensoring with the conservative functor ⊗BC, and thus B is
(faithfully) flat. �

Lemma 2.23. Let M be a flat R-module. The following are equivalent:
(1) M is faithfully flat,
(2) for all primes p ⊂ R, the fiber M ⊗R κ(p) is non-zero,
(3) for all maximal ideals m ⊂ R, the fiber M ⊗R κ(m) = M/mM is non-zero.

Proof. If M were faithfully flat with trivial fiber over p, then 0 = κ(p) by conservativity,
so (1) implies (2) which trivially implies (3). Assume conversely that all maximal fibers of
M are non-zero. It suffices to show that ⊗RM reflects zero objects. Clearly by flatness,
we may assume N = R/I and unless I = R simply choose a maximal ideal m ⊃ I, so
that N ⊗RM is non-zero. �

Lemma 2.24. Let R→ S be a flat ring map. The following are equivalent:
(1) A→ B is faithfully flat,
(2) the induced map on spectra is surjective,
(3) the induced map on spectra contains all closed points in its image.

Proof. This follows quickly from Lemma 2.23 as the last two conditions relate to the
fibers of A→ B being non-zero. �

Lemma 2.25. Let A → B be flat. The image of the induced map on spectra is stable
under generalization.
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Proof. The maps of local rings induced by A→ B are necessarily faithfully flat, because
the maximal fibers become non-zero, see Lemma 2.24. The same result now tell us that
these local maps are surjective on spectra, so the global map is generalizing. �

Now, we can finally define what it means for a map of schemes to be flat.

Definition 2.26. Let f : X → S be a morphism of schemes. We say that f is flat if
OX,x is a flat OS,f(x)-module.

More generally, for a quasi-coherent sheafM on X, we say that it is S-flat ifMx is a
flat OS,f(x)-module (so, f is flat iff the structure sheaf is S-flat).

Lemma 2.27. Let f : X → S be a morphism of schemes. Then, f is flat if and only if,
for any affine opens U ⊂ X and f(U) ⊂ V ⊂ Y , the restriction U → V comes from a
flat map of rings. Moreover, this can be checked on a single open affine cover.

Proof. Let A→ B be a ring map. As localizations are flat, we see that Ap → Bq also is
for all primes. Conversely, if this is the case for all primes, then we can apply faithfully
flat descent along B →

∏
Bq to see that so is A→ B. �

A similar statement holds for quasi-coherent sheaves, with the exact same proof.

Lemma 2.28. Flatness is stable under composition and base change.

Proof. This reduces to the corresponding statement over rings, see Lemma 2.19. �

Lemma 2.29. Let f : X → S be a flat map locally of finite presentation. Then, f is
universally open.

Proof. By Lemma 2.25, we know that f is generalizing. Since flatness and finite pre-
sentation are stable under base change, it suffices to show that the image of f is open.
According to Chevalley’s theorem, f has constructible image, and a generalizing con-
structible subset is necessarily open. �

2.4. Smooth morphisms. Recall that in differential geometry a smooth manifold has
local charts that are isomorphic to opens of Rd. In this subsection, we define a similar
notion for maps of schemes f : X → Y .

Definition 2.30. We say that a map of rings A→ B is standard smooth if there exists
a presentation B = A[x1, . . . , xn]/(f1, . . . , fc) such that the Jacobian matrix

Jac(f1, . . . , fc) :=


∂f1
∂x1

· · · ∂f1
∂xn

...
. . .

...
∂fc
∂x1

· · · ∂fc
∂xn

 (2.11)

taken inside B has rank c. Let f : X → S be a morphism of schemes. We say that f is
smooth at x ∈ X if there are affine open neigborhoods x ∈ U ⊂ X and f(x) ∈ f(U) ⊂
V ⊂ S such that U → V is standard smooth. We say that f is smooth if it is smooth at
every point of X.

A pleasing feature of this definition is that the smooth locus is automatically open. It
is also a local property on source and target, by definition.



ALGEBRAIC GEOMETRY II 11

Remark 2.31. If S = Spec(k) and k is a field, then we are in the situation of smooth
varieties. In particular, we know that a k-scheme X is smooth if and only if Xk̄ is regular,
where k̄ denotes an algebraic closure of k.

Lemma 2.32. Smooth morphisms are stable under composition and base change. More-
over, open immersions are smooth.

Proof. Open immersions are clearly smooth as one takes the identity as the presen-
tation itself. Stability under base change is also clear, because the presentation re-
mains with of maximal rank Jacobian after extending scalars. For composition, we
are reduced to considering two standard smooth maps A → B → C. We can write
C = B[y1, . . . , ym]/(g1, . . . , gd) and B = A[x1, . . . , xn]/(f1, . . . , fc). The only way to
proceed is to lift the coefficients of the gi to elements of A[x1, . . . , xn] and get the
presentation C = A[x1, . . . , xn, y1, . . . , ym]/(f1, . . . , fc, g1, . . . , gc). The Jacobian matrix
Jac(f1, . . . , fc, g1, . . . , gd) with C-coefficients is block upper triangular with the diago-
nal blocks equal to Jac(f1, . . . , fc) (taken in C) and Jac(g1, . . . , gd), so it has maximal
rank. �

We can understand the cotangent sheaf ΩX/S of a smooth map f : X → S pretty well.

Lemma 2.33. Let f : X → S be a smooth morphism of schemes. Then, the sheaf of
differentials ΩX/S is finite locally free of local rank given by the relative dimension of f .

Proof. We may assume that f is a standard smooth map of affines. Given a presentation
B = A[x1, . . . , xn]/(f1, . . . , fc), we have an exact sequence by Lemma 2.11

(f1, . . . , fc)/(f1, . . . , fc)
2 → ⊕1≤i≤nBdxi → ΩB/A → 0. (2.12)

The image is a rank c free B-module on a cardinality c subset of the dxi as it is given
by the rank c matrix Jac(f1, . . . , fc). This results in ΩB/A also being a free B-module
of rank n − c. Passing to geometric fibers and using the theory of tangent spaces, we
know that the fibers of ΩB/A have rank equal to the relative dimension d of f , and thus
d = n− c. �

Thanks to Lemma 2.33, the following definition makes sense.

Definition 2.34. Let d ≥ 0 be an integer. We say a morphism of schemes f : X → S is
smooth of relative dimension d if f is smooth and ΩX/S is finite locally free of constant
rank d.

In other words, f is smooth and the nonempty fibres are equidimensional of dimension
d. Unfortunately, local freeness of ΩX/S does not imply smoothness. In order to fix this,
we need to look at a notion of regularity for closed immersions.

Definition 2.35. Let A be a ring and f1, . . . , fc ∈ A[x1, . . . , xn] be a sequence. Then,
we say that the given sequence has regular fibers if, for every prime p ⊂ A, the reduction
of fi is not a zero divisor in κ(p)[x1, . . . , xn]/(f1, . . . , fi−1). In this case, we say that
A→ B = A[x1, . . . , xn]/(f1, . . . , fc) has global complete intersection (gci) fibers.

The order in which the fi are placed is important in general, but will not matter when
choosing a standard smooth presentation.
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Lemma 2.36. A standard smooth map A→ B is flat with gci fibers. Moreover, I/I2 is
a rank c free B-module, where I = (f1, . . . , fc).

Proof. It will be convenient for us to define the intermediate quotient rings Bi :=
A[x1, . . . , xn]/(f1, . . . , fi) for 0 ≤ i ≤ c, so that we have B0 = A[x1, . . . , xn] a poly-
nomial A-algebra, Bi = Bi−1/fiBi−1, and in the end Bc = B. We can check the as-
sertion on gci fibers after passing to geometric fibers, and therefore assume that A = k
is an algebraically closed field. Indeed, regularity of a sequence is expressed in terms
of injectivity of the multiplication maps of the corresponding elements, and this can be
checked after faithfully flat base change. Note that all of the intermediate quotient rings
Bi := k[x1, . . . , xn]/(f1, . . . , fi) are regular because Jac(f1, . . . , fi) must have rank equal
to i. In particular, they are all integral domains, and it suffices to check that fi 6= 0 in
Bi−1 to conclude. But if any term in the sequence were superfluous fi ∈ (f1, . . . , fi−1),
then the rank Jac(f1, . . . , fi) could not possibly equal i, so we win.

Now, we prove that A → B is flat by induction on c and assume that A is a local
noetherian ring with maximal ideal m (we omit the necessary approximation argument
in the non-noetherian case). Furthermore, we assume by induction that A → Bi−1 is
flat, the initial case i = 0 being the polynomial map A → A[x1, . . . , xn]. By the first
paragraph, we know fi is not a zero divisor in Bi−1 ⊗ κ(m). Next, we show that fi is
also not a zero divisor in Bi−1/m

nBi−1 for all n by induction on n. Note that we have a
short exact sequence

0→ mn−1Bi−1/m
nBi−1 → Bi−1/m

nBi−1 → Bi−1/m
n−1Bi−1 (2.13)

of A-modules, where the left term identifies with mn−1/mn ⊗A Bi−1 by flatness, hence
fi-torsion free. Assume by induction on n that the right term is fi-torsion free as well.
Then, it is not hard to show that the middle term of the short exact sequence is also
fi-torsion free, either by a diagram chase or by invoking the long exact sequence of Tor
groups. This means that the submodule Bi[fi] ⊂ Bi of fi-torsion is contained in the
intersection of all the mn. By Krull’s intersection theorem applied to every local ring of
Bi−1, we deduce that fi is also not a zero divisor in Bi. Finally, we wish to show that
A→ Bi is flat, for which we consider the short exact sequence

0→ Bi−1
·fi−→ Bi−1 → Bi → 0 (2.14)

of A-modules, the left and middle term being A-flat. Either by a diagram chagewe or by
using Tor1, we quickly reduce to Bi−1/IBi−1 being fi-torsion free for every ideal I ⊂ A.
But if we run the same argument from the beginning replacing A by A/I, then we get
the desired conclusion. By the way, the argument in this paragraph is sometimes called,
e.g., Vakil, the slicing lemma for flatness.

For the last assertion, there is a surjective map B⊕c → I/I2 of B-modules. To check
its injectivity, assume we can find polynomials pi ∈ A[x1, . . . , xn] with 1 ≤ i ≤ c such
that

∑
pifi lies in I2. Notice that while proving flatness in the middle paragraph, we

also saw that fi is not a zero divisor in Bi−1. Hence, we see that pcfc is a multiple of f2
c

in Bc−1, and thus pc ∈ I. By symmetry, we conclude that all the pi lie in I and our map
of B-modules is thus an isomorphism. �

The following characterizes a smooth morphism as a flat, finitely presented morphism
with regular geometric fibres.
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Theorem 2.37. Let f : X → S be a morphism of schemes. Then, f is smooth if and
only if f is flat, locally of finite presentation, and with regular geometric fibers.

Proof. By definition, smooth maps are locally of finite presentation. By Lemma 2.32, we
also know that its geometric fibers are smooth, and we already know that this can occur
if and only if they are regular (note that the base field is algebraically closed). In the
previous lemma, we saw that smooth maps are also flat.

Conversely, suppose f is flat, locally of finite presentation and with regular geometric
fibers. In particular, the fibers of f are smooth and after restricting to appropriate
affine opens, we may assume that they are standard smooth, hence gci by the above
lemma. We claim that the associated map A → B has gci fibers given by a single
unique sequence f1, . . . , fc after inverting an element in B. Indeed, we can write B =
A[x1, . . . , xn]/I and a more refined version of the argument in the previous lemma shows
that, after inverting an element of B, the B-module I/I2 is free of rank c. Choose
elements f1, . . . , fc ∈ I defining a B-basis modulo I2 and consider the finitely presented
A-algebra C = A[x1, . . . , xn]/(f1, . . . , fc). We first claim that C is standard smooth under
the given presentation. Indeed, after base change, we may let A = k be an algebraically
closed field, so by smoothness of geometric fibers, we know ΩB/k is free of rank d = n− c
and the right exact sequence of cotangent sheaves shows that the image of I/I2 →
⊕1≤i≤nBdxi is free of rank c. But f1, . . . , fc give a B-basis of I/I2 and the natural map
is given by Jac(f1, . . . , fc), so we derive the required condition for standard smoothness of
A→ C (because invertibility of a minor lifts from the κ(p)-fiber to the local ring). Next,
we claim that the surjection C → B becomes an isomorphism on fibers, equivalently by A-
flatness of B and C, that there is an equality I⊗Aκ(p) = (f1, . . . , fc)⊗Aκ(p) for all primes
p ⊂ A. This is implied by the fact that C ⊗A κ(p)→ B⊗A κ(p) is a surjection of regular
rings of the same dimension, so by Krull’s Hauptidealsatz it must be an isomorphism.
As a consequence, we can now see that the C-fibers of J = I/(f1, . . . , fc) vanish as well,
so by Nakayama applied to every local ring of C we deduce that J = 0, and hence B = C
is a standard smooth A-algebra. �

Here is a differential criterion of smoothness at a point.

Lemma 2.38. Let f : X → S be a morphism of schemes, locally of finite presentation.
Let x ∈ X and set s = f(x). The following are equivalent:

(1) The morphism f is smooth at x.
(2) The local ring map OS,s → OX,x is flat and Xs → Spec(κ(s)) is smooth at x.
(3) The local ring map OS,s → OX,x is flat and the κ(x)-vector space ΩX/S,x ⊗OX,x

κ(x) has dimension equal to dimx(Xf(x)).

Proof. We already saw the equivalence of the first two properties, and that the second
one implies the third. Note that by stability under base change, we can compute the
κ(x)-fiber of the stalk ΩX/S,x by assuming S = Spec(κ(s)) and X = Xs. But then,
we see by the Jacobian presentation that this vector space is the dual of TxX and the
condition means the κ(s)-scheme X is smooth, so we have proved equivalence with the
second property. �

In the next few lemmas, we prove that some of the right exact sequences we encountered
for differential sheaves actually turn out to be short exact under smoothness assumptions.
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For this, we rather need more sophisticated machinery than differential sheaves, which
yield another characterization of smoothness.

Definition 2.39. Let B be a A-algebra equipped with a finite presentation α : B '
A[x1, . . . , xn]/I with I = (f1, . . . , fc). We associate to α its truncated cotangent complex

τ≥−1LB/A := [I/I2 → ΩA[x1,...,xn] ⊗A B] (2.15)

sitting in cohomological degrees [−1, 0].

Remark 2.40. We stress that as a complex, τ≥−1LB/A is not independent of the choice
of a presentation α. Instead, it is true that any two such presentations induce homo-
topic, thus quasi-isomorphic, complexes. Therefore, the truncated cotangent complex
τ≥−1LX/S for a finitely presented map f : X → S of schemes exists only in the derived
category Dqc(X) of quasi-coherent sheaves on X. We will try to avoid using the de-
rived category in this course, but you should be aware of its key important in algebraic
geometry.

We see immediately from Lemma 2.11 that H0(LX/S) = ΩX/S . As for the −1-th
cohomology group, we have the following:

Proposition 2.41. Let f : X → S be a finitely presented map of schemes. Then, f is
smooth if and only if H−1(LX/S) = 0 and ΩX/S is locally free.

Proof. Note that if f is smooth, then I/I2 → ⊕1≤i≤nBdxi is split injective, because the
left side is free of rank c and the image is a direct summand of rank c by our assumptions
on Jac(f1, . . . , fc). This implies that H−1(LB/A) = 0. Conversely, the vanishing of H−1

implies that I/I2 injects into the middle term. On the other hand, ΩX/S is locally free,
so the short exact sequence locally splits, and we deduce that I/I2 is locally free and the
corresponding Jacobian matrices have maximal rank. �

Remark 2.42. Actually f is smooth if and only LX/S is concentrated in degree 0 and
ΩX/S is locally free, but constructing that object and proving this goes way beyond the
scope of these notes.

Lemma 2.43. Let f : X → Y , g : Y → S be morphisms of schemes. Assume f is
smooth. Then, the sequence

0→ f∗ΩY/S → ΩX/S → ΩX/Y → 0 (2.16)

(see Lemma 2.10) is short exact.

Proof. Since the assertion is local, we can pass to affine opens and consider the maps
of rings A → B → C with B → C standard smooth. We have to prove that the
map C ⊗B ΩB/A → ΩC/A is injective. Using compatible presentations, compare with
Lemma 2.32, one shows that there is a distinguished triangle of cotangent complexes

LB/A ⊗L
B C → LC/A → LC/B, (2.17)

where the tensor product on the left is derived: this means there is some Tor correction
going on in strictly negative degrees, but nothing changes in degree 0 which we care
about. (By the way, this is an example of the general principle that many anomalies,
singularities or obstructions can be partially fixed at the derived level.) Taking the long
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exact sequence of cohomology, it suffices to know that H−1(LC/B) = 0 and this was done
in the previous lemma. �

Lemma 2.44. Let Z be a smooth S-scheme and i : Z → X be an immersion of locally
finitely presented S-schemes. Then, the exact sequence

0→ CZ/X → i∗ΩX/S → ΩZ/S → 0 (2.18)

of Lemma 2.11 is short exact.

Proof. We pass to corresponding affine opens, so that A→ B → C are the corresponding
ring maps with A → C smooth and B → C surjective with kernel I. By Lemma 2.11,
we have to show that I/I2 → C ⊗B ΩB/A is injective. Again, we can deduce this from
the long exact sequence of cohomology attached to the short exact sequence of cotangent
complexes thanks to the vanishing of ΩC/B and H−1(LC/A). �

Lemma 2.45. Let i : Z → X and j : Z → Y be immersions and f : X → Y a smooth
map with f ◦ i = j. Then, the sequence

0→ CZ/Y → CZ/X → i∗ΩX/Y → 0 (2.19)

of Lemma 2.16 is exact.

Proof. Again, we may pass to affine opens and consider the ring maps A→ B → C with
A → C surjective and A → B standard smooth. We must show that I/I2 → J/J2 is
injective where I = ker(A→ C) and J = ker(B → C). This is implied by the vanishing
of H−1(LB/A). �

Lemma 2.46. Let p : X → S and q : Y → S be two S-schemes locally of finite presenta-
tion and f : X → Y be an S-map. If p is smooth and f is a smooth cover, then q is also
smooth.

Proof. We will see later that flat is a local property in the fpqc topology, which implies
that q is flat. In particular, it suffices to consider the geometric fibers of q, p, and f , so we
take S as the spectrum of an algebraically closed field k. Let x ∈ X and y = f(x) ∈ Y .
Suppose f has relative dimension a at x, i.e., the fiber Xy has dimension a, and X has
dimension b at x: flatness tells us that Y has dimension b − a at y. By Lemma 2.33,
we know that ΩX/S,x is free of rank b and ΩX/Y,x is free of rank a. Now, Lemma 2.43
implies that (f∗ΩY/S)x is free of rank b − a. Hence we conclude that Y → S is smooth
at y by Lemma 2.38. �

We mentioned in the beginning that smoothness for real manifolds means that it has
local charts isomorphic to opens of Rd. While local charts for schemes do not exist in
the Zariski topology, we can say something about complete local rings.

Lemma 2.47. Let f : X → S be a morphism of schemes admitting a section σ. Let
s ∈ S be a point such that f is smooth at x = σ(s). Then, there exists an isomorphism
ÔX,x ' ÔS,s[[x1, . . . , xn]].

Proof. Passing to appropriate affines, we may assume that f is induced by a standard
smooth map of rings A → B and σ by an epimorphism B → A with kernel I. We can
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identify I/I2 ' ΩB/A ⊗B A, so it is a free A-module of rank n. Let x1, . . . , xn ∈ I be
lifts of an A-basis of I/I2 and define the resulting map

ÔS,s[[x1, . . . , xn]]→ ÔX,x. (2.20)

This is a surjection by construction. On the other hand, it is also faithfully flat, because
it arises as the local completion of an étale map, and thus in particular injective. �

2.5. Unramified morphisms. We briefly discuss unramified morphisms before the
much more interesting class of étale morphisms.

Definition 2.48. Let f : X → S be a morphism of schemes. We say that f is unramified
if it is locally of finite presentation and ΩX/S = 0.

Remark 2.49. Some divergence in the literature persists on whether unramified maps
have to be locally of finite type or locally of finite presentation, but here we stick with the
latter for consistency, knowing that in the comfy noetherian world nothing bad happens
anyway.

Lemma 2.50. Unramified maps are stable under composition and base change.

Proof. This is true for locally finitely presented maps, so stability under composition
follows from Lemma 2.10 and under base change from Lemma 2.9. �

Lemma 2.51. A finitely presented immersion i : Z → X is unramified.

Proof. Obvious by definition, as ΩZ/X vanishes. �

Lemma 2.52. Let f : X → S be morphism of schemes. If f is unramified, then it is
locally quasi-finite.

Proof. By stability under base change, see Lemma 2.9, we know that ΩX/S⊗OS
k = ΩXk,k

for any field k and any k-valued point of S. Therefore, the geometric fibers of f are
smooth of dimension 0 by our criterion, as every scheme is flat over a field. Therefore,
the geometric fibers are discrete, and this implies local quasi-finiteness of f . �

The following lemma characterizes an unramified morphisms as morphisms locally of
finite type with unramified fibres.

Lemma 2.53. Let f : X → S be a morphism of schemes locally of finite presentation.
Then, f is unramified if and only if the geometric fibers are reduced and discrete.

Proof. We saw during the previous lemma that an unramified f has smooth fibers of
dimension 0, so they are discrete and reduced. Conversely, if f has reduced discrete
fibers, then we see that ΩX/S ⊗ κ(s) = 0 for any s ∈ S, so the stalk at any point x
vanishes by Nakayama’s lemma and f is unramified. �

Here is a characterization of unramified morphisms in terms of their diagonals.

Lemma 2.54. Let f : X → S be a morphism locally of finite presentation. Then, f is
unramified if and only if its diagonal ∆f : X → X ×S X is an open immersion.
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Proof. If the diagonal is an open immersion, then CX/X×SX vanishes and hence so does
ΩX/S by Lemma 2.12. Conversely, we may pass to affine opens and the map f is induced
by an unramified map A → B of rings. Thus, if we set I = ker(B ⊗A B → B), then
I = I2 again by Lemma 2.12. By hypothesis, I is finitely generated and we can use the
I-variant of Nakayama’s lemma to find f ∈ 1 + I annihilating I. Then f2 = f + if = f
is an idempotent and so is 1− f ∈ I. This shows that ∆f is a clopen immersion. �

Lemma 2.55. Let f : X → S be a morphism of schemes, locally of finite presentation.
Let x ∈ X and set s = f(x). The following are equivalent:

(1) The morphism f is unramified at x.
(2) The κ(x)-vector space ΩX/S,x ⊗OX,x

κ(x) vanishes.
(3) We have msOX,x = mx and the field extension κ(x)/κ(s) is finite separable.

Proof. We have basically already seen that all of these are equivalent. For the third
property, just note that if the fibers are smooth, then they must be given by disjoint
unions of spectra of finite separable extensions. �

Lemma 2.56. Let f : X → Y be a locally finitely presented morphism of locally finitely
presented S-schemes. If p : X → S is unramified, then so is f .

Proof. By assumption we have ΩX/S = 0. Hence ΩX/Y = 0 by Lemma 2.10 and thus f
is unramified. �

2.6. Étale morphisms. The Zariski topology is very coarse, as made clear by consid-
ering varieties over C. Grothendieck’s solution to this issue was to algebraize the notion
of a local isomorphism in the complex-analytic topology, into what is now known as an
étale map. In this section we will be handling these in full generality.

Definition 2.57. Let f : X → S be a morphism of schemes. We say that f is étale if it
is smooth and unramified. We say that a map of rings A→ B is standard étale if there
is a presentation B = A[x, y]/(f, gy − 1) with f, g ∈ A[x], f monic and f ′ ∈ B×.

Remark 2.58. A standard étale map is standard smooth as Jac(f, gy − 1) is upper
triangular with diagonal entries f ′, g being units in B. However, if A → B is standard
smooth with of relative dimension 0, then it is étale, but not necessarily standard étale.
Standard étale maps are also not stable under composition.

A morphism is étale if and only if it is smooth of relative dimension 0, because un-
ramified fibers are discrete. Again, there is an open (possibly empty) étale locus for any
f : X → S.

Lemma 2.59. Étale maps are stable under composition and base change.

Proof. Both follow from the corresponding statements for unramified and smooth maps,
see Lemmas 2.32 and 2.50. �

Note that unramified schemes over fields are automatically étale, so we understand
already how fibers of étale maps look like due to the case of unramified maps. Next, we
give the characterization of étaleness in terms of flatness and geometric fibers.

Lemma 2.60. Let f : X → S be a morphism of schemes, locally of finite presentation.
Then, f is étale if and only if it is flat and with discrete reduced geometric fibers.
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Proof. Again, this follows from the corresponding statements for smooth and unramified
maps. �

Note that open immersions are étale, as these are local isomorphisms. In general, there
are many étale maps that are not open immersions.

The following lemma says locally any étale morphism is standard étale. The proof is a
bit convoluted and included only for self-containment. We encourage the reader to skip
it without regrets.

Lemma 2.61. Let f : X → S be an étale morphism of schemes. Then, for any x ∈ X,
there exist affine open neighborhoods x ∈ U ⊂ X and s := f(x) ∈ f(U) ⊂ V ⊂ S such
that U → V is induced by a standard étale map of rings.

Proof. We can assume that f is a map of affines induced by an étale map A → B of
rings. Let q ⊂ B be any prime ideal and p ⊂ A be its pullback. We assume that A is
excellent and omit the trickier arguments in the non-excellent case. Let C ⊂ B be the
normalization of A→ B, so that A→ C is finite because A is excellent. After localizing
B, we may assume it is a principal localization of C. Note that C⊗A κ(p) is a product of
finite κ(p)-algebras indexed by the fibers of the map A→ C on spectra, with the q-factor
being isomorphic to κ(q) by étaleness of A→ B. Let c be an element that generates the
q-factor as a κ(p)-algebra and consider the corresponding map A[x]→ C with kernel I.
Its image D is still finite over A and is locally isomorphic to B around q. The ideal I is
generated modulo p by a polynomial h ∈ I ⊂ A[x]. After localizing A, we may assume
the image h̄ ∈ κ(p)[x] is monic, but it is not clear that h is monic yet (choosing it so
could a priori make us leave ideal I). By étaleness of A→ B, we check that h̄ factors as
a product h̄qh̄q with the first terms monic irreducible vanishing at q and the other term
prime to q. Summing a large monic polynomial in I to h, we can find a monic f ∈ I
whose image in κ(p)[x] shares a similar factorization, i.e., it has multiplicity 1 at q. This
means its derivative g := f ′ is invertible at q, and hence A[x, y]/(f, gy − 1) is standard
étale. It is not too difficult to check now that it is locally isomorphic to B around q. �

Here is a differential criterion of étaleness.

Lemma 2.62. Let f : X → S be a morphism of schemes, locally of finite presentation.
Let x ∈ X and set s = f(x). The following are equivalent:

(1) The morphism f is étale at x.
(2) The local ring map OS,s → OX,x is flat and the κ(x)-vector space ΩX/S,x ⊗OX,x

κ(x) is zero.
(3) The local ring map OS,s → OX,x is flat, we have msOX,x = mx and the field

extension κ(x)/κ(s) is finite separable.
(4) There exist affine opens U ⊂ X, and V ⊂ S such that x ∈ U , f(U) ⊂ V and the

induced morphism f |U : U → V is standard smooth of relative dimension 0.
(5) There exist affine opens U ⊂ X, and V ⊂ S such that x ∈ U , f(U) ⊂ V and the

induced morphism f |U : U → V is standard étale.

Proof. Left as an exercise, as it follows rapidly from our previous work. �

Our proof of the following lemma uses the critère de platitude par fibres to see that a
morphism X → Y of S-étale schemes is automatically flat.
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Lemma 2.63. Let f : X → Y be a morphism of schemes over S, locally of finite
presentation. If X and Y are étale over S, then f is étale.

Proof. The geometric fibers of f are closed subschemes of those of p : X → S, so we
conclude that they are discrete and reduced as well. Besides, we know that X and Y
are flat S-schemes, and the geometric fibers of f with respect to S are maps of discrete
and reduced varieties over an algebraically closed field, hence trivially flat. This means
we can apply the critère de platitude par fibres to get flatness of f itself. �

The next permanence property is analogous to the one for smooth maps.

Lemma 2.64. Let p : X → S and q : Y → S be maps of schemes, locally of finite
presentation. If p is étale and f : X → Y is an étale cover of S-schemes, then q is étale.

Proof. We already know by Lemma 2.46 that q is smooth. It is rather easy to check that
q has relative dimension 0, by additivity of dimensions for flat maps, and the fact that f
and p have relative dimension 0. �

Finally, we can describe smooth maps in terms of étale maps towards affine spaces.

Lemma 2.65. Let f : X → Y be a smooth morphism of schemes. Let x ∈ X and set
y = f(x). Then, there exist affine open neighborhoods x ∈ U ⊂ X and y ∈ f(U) ⊂ V ⊂ Y
such that the restriction of f factors through an étale map U → AdV over V .

Proof. We may assume that f is induced by a standard smooth map of rings A → B.
Then, we can write B = A[x1, . . . , xn]/(f1, . . . , fc), with Jac(f1, . . . , fc) having maximal
rank in B. Say the invertible minor is given by the first c columns, i.e., involving the
coordinates x1, . . . , xc. Then, it is clear that A[xc+1, . . . , xn]→ B is standard smooth of
relative dimension 0, thus étale. �

3. Homological algebra

3.1. Complexes and homotopies. In this section, we discuss the notions of complexes
and homotopies in an additive category. This will allow us to define the cohomology of a
complex and the associated long exact sequence starting from a short exact sequence of
complexes. Before doing this, we need to explain what is meant by additive and abelian
categories.

Definition 3.1. Let A be a category.
(1) The category A is pointed if it possesses an object that is both initial and final,

denoted as 0. We call it a zero object in A.
(2) A pointed category A is additive if it admits finite biproducts, (i.e., for any

X,Y ∈ A, there exists an object X ⊕ Y which is a product and coproduct), and
the natural monoid HomA(X,Y ) is an abelian group.

(3) An additive category A is abelian if for all f : X → Y in A, both the kernel
ker(f) := 0×Y,f X and the cokernel coker(f) := 0tX,f Y exist, and furthermore
the natural map coim(f) := coker(ker(f) → X) → ker(Y → coker(f)) =: im(f)
is an isomorphism.
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Remark 3.2. Notice that the definition is intrinsic, i.e. given in terms of properties that
ought to be satisfied. Often one finds an extrinsic definition in the literature, i.e., given
in terms of some extra structure, but it turns out that this is not really necessary.

Let us look at some examples, which serve as some sanity check and for getting a
better feel of the notion.

Example 3.3. The category Ab of abelian groups is an example of an abelian category.
However, the full subcategory TorFr of torsion-free abelian group is only additive, but
not abelian despite admitting kernels, as it lacks cokernels.

Example 3.4. More generally, we can consider the abelian category ModR of R-modules
over a commutative ring R. It contains the full subcategory ProjR of projective R-
modules which is additive, but not abelian.

Definition 3.5. An additive functor is a functor F : A → B between additive categories
that preserves direct sums and zero objects.

Now, we can define the notion of cochain complexes. The term cochain only means
that indices increase along the maps, whereas in a chain complex they decrease. Since
we deal mostly with cohomology in this course, we will drop the adjective cochain.

Definition 3.6. Let A be an additive category. A complex A• in A consists of objects
Ai of A for all integers i and morphisms di : Ai → Ai+1 such that di+1 ◦ di = 0 for all
i. A morphism of complexes f• : A• → B• is given by maps f i : Ai → Bi such that
f i+1 ◦ di = di ◦ f i for all i. We denote by C(A) the category of complexes of A.

This is an additive category, and even abelian if so isA. The full subcategory consisting
of complexes A• such that Ai = 0 for i < 0 is denoted C≥0(A). Similarly, we define
C≤0(A) as the full subcategory of complexes A• such that Ai = 0 for i > 0. One may
also define analogous versions C[a,b](A) for any integers a ≤ b. Finally, we let Cb(A) be
the full subcategory of bounded complexes A•, meaning only finitely many of the Ai are
non-zero. There is also the notion of left (resp. right) bounded complexes giving rise to
the full subcategory C+(A) (resp. C−(A)).

Given an additive category A, we can identify A with the full subcategory of C(A)
consisting of complexes A• such that Ai = 0 when i 6= 0. We denote the complex attached
to A by A[0]. Without further ado, let us discuss shift functors.

Definition 3.7. Let A be an additive category and A• be a complex in A. For any
k ∈ Z we define the k-shifted chain complex A[k]• as follows: we set A[k]n = An+k,
with transition maps dn : An+k → An+k+1 twisted by the sign (−1)k. If f : A• → B•

is a morphism of chain complexes, then we let f [k] : A[k]• → B[k]• be the morphism of
complexes with f [k]n = fn+k.

In particular, we get endofunctors [k] of C(A) such that A[k][l]• = A[k + l]• and with
[0] = idC(A). In accordance with our embedding A → C(A), the notation A[k] for any
object A of A indicates the complex obtained by placing A in degree −k with vanishing
terms otherwise. Please beware the mean sign!

Next, we concern ourselves with the crucial notion of homotopies.
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Definition 3.8. A homotopy h• between a pair of morphisms of complexes f•, g• : A• →
B• is a collection of maps hi : Ai → Bi−1 such that f i − gi = di−1 ◦ hi + hi+1 ◦ di holds
for all i. In that case, we say that f, g : A• → B• are homotopic.

When g = 0, we simply say that f is nullhomotopic. This leads us to the definition of
homotopy equivalences.

Definition 3.9. Let A be an additive category. A morphism f : A• → B• of complexes
in A is a homotopy equivalence if there exists a map g : B• → A• such that f ◦ g − idB
and g ◦ f − idA are nullhomotopic. In that case, A• and B• are said to be homotopy
equivalent and g is a homotopy inverse to f .

Lemma 3.10. Let A be an additive category. The set of homotopies between f, g : A• →
B• two maps of complexes in A is either empty or in bijection with the HomC(A)(A

•, B[1]•).

Proof. Let hij : Ai → Bi−1 define two nullhomotopies of f − g for j = 1, 2. We see that
the differences hi12 := hi1 − hi2 define a nullhomotopy of 0. By the homotopy equation,
this means −di−1 ◦ hi12 = hi+1

12 ◦ di. In particular, the hi12 define a map of complexes
A• → B[1]•. Conversely, if there exists a nullhomotopy of f − g, we can modify it with
such a map A• → B[1]• of complexes (regarded as a nullhomotopy of 0), and get another
nullhomotopy of f − g. �

A special feature of derived categories that we will see later on is that they possess a
certain rotation symmetry. For now, we can prove this at the level of complexes:

Lemma 3.11. Let 0→ A• → B• → C• → 0 be a short exact sequence of complexes with
splittings Bi = Ai ⊕ Ci for all i (not necessarily compatible with the di). The resulting
maps Ci → Bi → Bi+1 → Ai+1 define a map C• → A•[1] of complexes.

Proof. Let ji : Ai → Bi and qi : Bi → Ci be the natural complex maps. Denote by
si : Ci → Bi the individual sections, and by πi : Bi → Ai the corresponding projections.
The map θi : Ci → Ai+1 in the statement equals πi+1 ◦ diB ◦ si. Note that ji+1 ◦ πi+1 =

idi+1
B −si+1◦qi, so it follows that ji+1◦θi = diB◦si−si+1◦diC . Now, we compute di+1

A ◦θi by
post composing with ji+2 which coincides with di+1

B ◦(diB◦si−si+1◦diC) = di+1
B ◦si+1◦diC .

On the other hand, we have that θi+1 ◦ diC is the only map which postcomposed with
ji+2 yields (di+1

B ◦ si+1 − si+2 ◦ di+1
C ) ◦ diC = di+1

B ◦ si+1 ◦ di+1
C as well. �

One can also show that if two splittings differ by maps hi : Ci → Ai, then these define
a homotopy between the two different maps of complexes C• → A•[1].

Definition 3.12. Let A be an abelian category. The i-th cohomology group of a complex
A• is given by

H i(A•) = ker(di)/im(di−1). (3.1)

We denote by H i : C(A) −→ A the resulting additive functor of cohomology.

The last sentence is reasonable, because a map f : A• → B• of complexes of A
satisfies the inclusion f i(ker(diA)) ⊂ ker(diB) (resp. f i(im(di−1

A )) ⊂ im(di−1
B )), so we get

a corresponding map H i(f) : H i(A•)→ H i(B•) in cohomology.
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Definition 3.13. Let A be an abelian category. We say that a map of complexes
f : A• → B• in A is a quasi-isomorphism if H i(f) : H i(A•)→ H i(B•) are isomorphisms
for all i. If A• has vanishing cohomologies, then we say it is acyclic.

Lemma 3.14. Let A be an abelian category. Given homotopic maps of complexes f, g :
A• → B•, we get an equality H i(f) = H i(g). In particular, homotopy equivalences are
quasi-isomorphisms.

Proof. Subtracting g, we are reduced to showing that a nullhomotopic map f : A• → B•

induces trivial maps upon taking cohomology. If we restrict f i = di−1 ◦ hi + hi+1 ◦ di to
ker(di) then the second term in the sum on the right vanishes, so we see that f i(ker(di)) ⊂
im(di−1). In particular, H i(f) = 0. For the last claim, let f : A• → B• be a homotopy
equivalence with a homotopy inverse g. We observe that H i(f ◦ g) = 1 = H i(g ◦ f) and
since we are in the presence of a functor H i, this implies H i(f) and H i(g) are inverses
to one another and thus f is a quasi-isomorphism. �

Theorem 3.15. Let A be an abelian category. Suppose that 0→ A• → B• → C• → 0 is
a short exact sequence of complexes in A. Then there is a long exact cohomology sequence

. . . H i(A•) H i(B•) H i(C•) H i+1(A•) . . . (3.2)

functorial in short exact sequences.

Proof. Consider the commutative diagram

coker(di−1
A ) coker(di−1

B ) coker(di−1
C ) 0

0 ker(di+1
A ) ker(di+1

B ) ker(di+1
C )

(3.3)

with the obvious maps induced by the differentials di thanks to the complex equations
di ◦ di−1 = 0 = di+1 ◦ di. Note that both rows are exact by an application of the
snake lemma to the relevant portions of the short exact sequence 0 → A• → B• →
C• of complexes. Next, we want to apply the snake lemma again to the displayed
commutative diagram instead. The kernels of the vertical maps are the cohomology
groups H i(A•), H i(B•), H i(C•), whereas their cokernels equal the cohomology groups
H i+1(A•), H i+1(B•), H i+1(C•). In particular, we get the desired long exact sequence
from the snake lemma.

For functoriality under short exact sequences, we can extend the diagram above to a
parallelepiped. A simple diagram chase shows that even the connecting homomorphism
coming from the snake lemma are natural in 0→ A• → B• → C• → 0. �

Lemma 3.16. Let A be an abelian category. Consider a commutative diagram

A B C 0

0 A′ B′ C ′

a b c (3.4)

with exact rows. Then we get an exact sequence

ker(a)→ ker(b)→ ker(c)→ coker(a)→ coker(b)→ coker(c) (3.5)
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If both rows are furthermore short exact, then the sequence of kernels and cokernels
remains exact upon adding two 0s to the left and to the right. The long exact sequence is
natural in diagrams of the given form.

Proof. Let us consider the first half of the sequence ker(a) → ker(b) → ker(c) whose
maps are induced by those of the sequence A → B → C → 0. It is clearly a complex
because that is true for the original first row. We need to prove exactness at ker(b).
The kernel of ker(b) → ker(c) lies in the image of A → B. Since A′ → B′ is injective,
we deduce that the kernel of the map of kernels is necessarily contained in the image
of ker(a) → ker(b). Dual arguments give exactness of coker(a) → coker(b) → coker(c).
Also note that if A → B is injective, then so is the map ker(a) → ker(b) between their
subobjects. Similarly, surjectivity of B′ → C ′ yields that of coker(b)→ coker(c).

We are left with producing the connecting homomorphism δ : ker(c) → coker(a) and
checking exactness of the resulting sequence at those two places. The preimage of ker(c)
in B contains the image of A and maps to A′ under b by exactness of the diagram rows.
If we project this preimage further to coker(a), then we kill the subobject A, and deduce
the connecting map δ. Next, we check exactness of the long sequence at ker(c). Notice
that ker(b) dies under b meaning its image under δ must also vanish. This shows that
we have a complex. If we look at ker(δ), it lifts to a submodule of B containing the
image of A and also ker(b). The restriction of b to that submodule has image in A′ and
it is clear that the map towards coker(a) has kernel equal to the image of A ⊕ ker(b).
This means that ker(b) → ker(δ) is surjective, as desired. Passing to the dual abelian
category or repeating the dual arguments, we deduce that our final sequence is also exact
at coker(a). Naturality of the long exact sequence in the diagrams can be checked by
drawing the corresponding parallelepiped and a diagram chase reveals that the relevant
maps commute. �

3.2. Derived functors. In the realm of homological algebra, derived functors are fun-
damental tools used to correct exactness deficiencies of our preferred additive functors of
abelian categories. They provide a means to compute homology and cohomology groups
in various categories.

Definition 3.17. If A and B are abelian, an additive functor F : A → B is called left
(resp. right) exact if, for all f : X → Y , the canonical map F (ker(f)) → ker(F (f))
(resp. F (coker(f))→ coker(F (f))) is an isomorphism.

In particular, given a left exact functor F : A → B of abelian categories, and a short
exact sequence

0→ A→ B → C → 0, (3.6)
in A, we obtain the following exact sequence in B:

0→ F (A)→ F (B)→ F (C) (3.7)

The corresponding dual statement holds for right exact functors.

Example 3.18. Let A be an abelian category and A an object thereof. The additive
endofunctor B 7→ HomA(A,B) is always left exact but not right exact in general (take
non-injective A), whereas the additive endofunctor B 7→ HomA(B,A) is always right
exact but not left exact in general (take non-projective A).
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Example 3.19. Let R be a commutative ring and M be an R-module. The additive
endofunctor N 7→ N ⊗RM of ModR is always right exact, but not left exact in general
(take M to be non-flat).

Example 3.20. Let X be a scheme and consider the additive functor Γ(X,−) from the
category ShvX of abelian sheaves on X to the category Ab of abelian groups. This is a
left exact functor.

Next, we try to measure the exactness failure of a left exact functor, which will lead
us straight to the notion of cohomology groups.

Definition 3.21. Let F : A → B be a left exact functor of abelian categories. A
cohomological δ-functor F • extending F is a sequence F i : A → B of additive functors
such that F 0 = F , together with natural boundary maps δ : F i(Z) → F i+1(X) for all
short exact sequences 0→ X → Y → Z → 0 in A, inducing an exact complex:

0→ F 0(X)→ F 0(Y )→ F 0(Z)
δ−→ F 1(X)→ F 1(Y )→ F 1(Z)

δ−→ F 2(X)→ · · · . (3.8)

We say that δ is universal if it is initial in the category of cohomological δ-functors
extending F .

In general, it is difficult to check whether a certain δ-functor is universal, but there is
a helpful criterion due to Grothendieck.

Definition 3.22. A cohomological δ-functor F • is effaceable if for each X ∈ A, there
exists an injection X → Xi such that F i(X)→ F i(Xi) vanishes for all i > 0.

Recall the notions from commutative algebra of injective and projective objects we
alluded to in the examples above. We say that an abelian category A has enough injec-
tives (resp. projectives) if every object embeds in some injective (resp. is covered by a
projective).

Lemma 3.23. If A has enough injectives, then a δ-functor F • is effaceable if and only
if F i vanishes on injectives for all i > 0.

Proof. The reverse implication is obvious. For the direct implication, note that the
injection X → Xi splits by injectivity of X, so F i(X) is a direct summand of F i(Xi). It
also maps to zero by effacibility, so it vanishes. �

The following theorem explains the interest behind effaceable δ-functors.

Theorem 3.24 (Grothendieck). Effaceable cohomological δ-functors are universal.

Proof. Let G• be any cohomological δ-functor extending F . We aim at constructing
a sequence of natural transformations F i → Gi for all i ≥ 0 respecting the boundary
maps. Since F 0 = G0 = F , this is clear for i = 0. Assume that we can produce these
natural transformations for all j < i for a given i > 0. For any object X of A, choose an
effacement Xi for X, thanks to our hypothesis on F •. From this we obtain the following
diagram with exact rows:

F i−1(Xi)
a−→ F i−1(X/Xi)

b−→ F i(X) −→ F i(Xi)
↓ ↓ ↓ ↓

Gi−1(Xi) −→ Gi−1(X/Xi) −→ Gi(X) −→ Gi(Xi)

, (3.9)



ALGEBRAIC GEOMETRY II 25

where the two vertical arrows on the right still require an explanation. Note that
F i(X) = coker(a) by exactness of the top row and our effaceability hypothesis on F •. By
functoriality of cokernels, we deduce the desired map ϕi : F i(X)→ Gi(X). In particular,
ϕi factors through the image of Gi−1(X/Xi)→ Gi(X) so it vanishes after post-composing
with Gi(X)→ Gi(Xi). Therefore, the last vertical arrow can be an arbitrary morphism,
and the diagram will commute.

We still need to verify independent of ϕi from our choice of Xi. First of all, it is not
too hard to see that the category of effacements of X is filtered (use the existence of finite
coproducts). But if we have a map Xi → X ′i respecting X, the independence becomes
clear by functoriality and our induction hypothesis.

Finally, we have to see that the construction of ϕi is natural in X. Again, we can
choose the effacements X → Xi and Y → Yi in a functorial manner (take Yi to be an
effacement of Xi tX Y ). Then, we consider the following cube

F i−1(Xi/X) F i(X)

F i−1(Yi/Y ) F i(Y )

Gi−1(Xi/X) Gi(X)

Gi−1(Yi/Y ) Gi(Y )

(3.10)

and claim that it commutes. This is true for the top and bottom faces by definition of
cohomological δ-functors. It holds for the front and back faces by construction of ϕ. By
induction on i (the i = 0 case being trivial), we may and do assume that the left face
commutes. We assert that so does the right face and by surjectivity of F i−1(Xi/X) →
F i(X), it is enough to check the claim after pre-composing with that quotient map.
Then, a simple diagram chase reveals the desired commutativity, and thus functoriality
of ϕi in X.

The last requirement is commutativity with respect to boundary maps. In order to
do this, we consider an effacement Xi of X for i > 0 carrying a map from Y . Then, the
short exact sequence 0 → X → Y → Z → 0 admits a natural map to 0 → X → Xi →
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Xi/X → 0. This leads us to consider the following cube with the obvious maps

F i−1(Z) F i(X)

F i−1(Xi/X) F i(X)

Gi−1(Z) Gi(X)

Gi−1(Xi/X) Gi(X)

(3.11)

and we claim again that it commutes. Notice again that the top and bottom faces
commute by definition of cohomological δ-functors. The right face trivially commutes,
the front face commutes basically by construction of ϕ•, and the left face can be assumed
to commute by induction on i (the initial case i = 1 being trivial). Now, a diagram
chase along the cube reveals the desired commutativity of the back face, so ϕ• respects
boundaries. �

In the presence of enough injectives, we get an existence statement:

Theorem 3.25. Let F : A → B be a left-exact functor of abelian categories. If A has
enough injectives, then F extends to an effaceable (and in particular universal) cohomo-
logical δ-functor F•

Proof. Given an object X in A, we choose an injective resolution X → I•, i.e., a sequence
Ii of injective modules for i ≥ 0 with maps Ii → Ii+1 which is exact at every i > 0 and
such that 0 → X → I0 → I1 is left exact. Such a resolution can be constructed
inductively thanks to the existence of enough injectives. We define F i(X) as the i-th
cohomology group of the complex F (I•). By left exactness of F , we do indeed recover
F 0(X) = X. When applied to an injective object X, it yields vanishing of F i(X) by
taking X as its own injective resolution. However, we still have to verify that this group
F i(X) for i > 0 is independent from the choice of an injective resolution X → I•.

We claim more generally that given a couple of injective resolutions X → I• and
Y → J•, any map f : X → Y extends to a map f• : I• → J• uniquely up to homotopy.
In particular, we get the desired independence of F i(X) from I• by applying this result
to f = idX and noticing that homotopic maps of complexes induce the same map at
the level of cohomology. We construct f i by induction on i assuming all the f j have
been defined for j < i. When i = 0, we have a map X → Y → J0 which extends to
f0 : I0 → J0 by injectivity. Similarly, when i = 1, we have a map I0/X → J0/Y → J1

which extends to f1 : I1 → J1 by injectivity. Suppose now that i > 1. Then, we look
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at the composition coker(Ii−2 → Ii−1)→ coker(J i−2 → J i−1)→ J i induced by f j with
j = i− 2, i− 1, and notice that it extends to f i : Ii → J i by injectivity of Ii.

Next we need to ensure that any other map g• : I• → J• of complexes extending f
is homotopic to our favorite f•. Again, we are going to construct maps hi : Ii → J i−1

for i > 0 by induction on i such that f0 − g0 = h1 ◦ d0 when and f i−1 − gi−1 =
di−2 ◦ hi−1 + hi ◦ di−1 for i > 1. The initial case i = 1 is done as follows. Observe
that the difference f0 − g0 : I0 → J0 necessarily kills X, so it factors through a map
I0/X → J0, meaning it extends to h1 : I1 → J0 so that the homotopy equation holds.
The next case that we consider separately is when i = 2. We look at f1 − g1 : I1 → J1

and notice that its restriction to the image of I0 coincides with h1 followed by J0 → J1.
Hence, we get a map coker(I0 → I1) → J1 given by the difference f1 − g1 − d0 ◦ h1.
This extends by injectivity to a map h2 : I2 → J1, yielding the claimed homotopy
equation by construction. Next, we assume that the hj have been constructed for all
j < i, where i > 2. Again, the map f i−1 − gi−1 : Ii−1 → J i−1 restricts to di−2 ◦ hi−1 on
the image of Ii−2. This means that we get a map coker(Ii−2 → Ii−1) → J i−1 given by
f i−1 − gi−1 − di−2 ◦ hi−1 and it extends to hi : Ii → J i−1 by injectivity, as desired.

Unfortunately, we are not yet done with the proof. While we have shown that F i for
i > 0 is a well-defined functor vanishing on injectives, we still have to prove F • forms a
cohomological δ-functor, i.e., that we get long exact sequences attached to short exact
sequences 0→ X → Y → Z → 0 in A. We claim that there exists a short exact sequence

0→ I• → J• → K• → 0 (3.12)

of injective resolutions extending the given short exact sequence in A. We letX → I• and
Z → K• be arbitrary injective resolutions and will now construct a resolution Y → J•

filling the short exact sequence above. We define J i and the maps either from Xi and
J i−1 or to Zi by induction on i. The case i = 0 follows by extending X → I0 to a map
Y → I0 and then defining the corresponding map Y → J0 = I0 ⊕K0. The case i = 1
will be subsumed into the general i > 1 case by extending the injective resolutions to
degree −1 via the original short exact sequence. Then, we have a short exact sequence

0→ coker(Ii−2 → Ii−1)→ coker(J i−2 → J i−1)→ coker(Ki−2 → Ki−1)→ 0 (3.13)

by the snake lemma. The left and right terms embed respectively into the injectives
Ii and Ki and we can find J i fitting in the desired exact sequence by invoking the
initial case. Now, we apply the long exact sequence of cohomology to the complex
0→ F (I•)→ F (J•)→ F (K•)→ 0. For mental health reasons, we omit the verification
that the long exact sequence obtained in this manner is independent of the choice of
injective resolutions, and functorial in short exact sequences. In conclusion, we have
constructed an effaceable cohomological δ-functor F •, hence universal. �

Definition 3.26. Given a left exact functor F : A → B of abelian categories with enough
injectives, we denote by RiF : A → B for i ≥ 0 the i-th component of the universal δ-
cohomological extension of F and call it the i-th right derived functor of F : A → B.

When F equals the global sections functor M 7→ Γ(X,M) on abelian sheaves on a
scheme X, it is common to write M 7→ H i(X,M) for RiF . We will verify later the
category ShvX contains enough injectives.
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3.3. Spectral sequences. Spectral sequences are a highly technical machinery meant
to understand what composing derived functors does on cohomology groups. All our
spectral sequences will lie in the first quadrant.

Definition 3.27. Let A be an abelian category.
(1) A spectral sequence in A is a system of objects Ep,qr in A for all non-negative

integers p, q ≥ 0, and maps dp,qr : Ep,qr → Ep+r,q+1−r
r such that dp,qr ◦dp−r,q−1+r

r =
0, and Ep,qr+1 = ker(dp,qr )/im(dp−r,q−1+r

r ) for all r ≥ 0.
(2) A morphism of spectral sequences a family of morphisms fp,qr : Ep,qr → E′p,qr such

that fp+r,q+1−r
r ◦ dp,qr = d′p,qr ◦ fp,qr and such that fp,qr+1 is induced by fp,qr .

Note that, for the above definition to make sense, we implicitly extend Ep,qr and dp,qr to
all integers by declaring them as 0 if either p or q is negative. Given a spectral sequence,
we define an increasing sequence of subobjects Bp,q

r ⊂ Bp,q
r+1 ⊂ Ep,q0 and a decreasing

sequence Zp,qr+1 ⊂ Zp,qr ⊂ Ep,q0 such that Bp,q
r ⊂ Zp,qr with cokernel isomorphic to Ep,qr .

Indeed, by induction we let Zp,qr+1 ⊂ Zp,qr be the lift of the kernel of dp,qr on Zp,qr /Bp,q
r ,

and Bp,q
r+1 ⊂ Zp,qr be the lift of the image of dp−r,q−1+r

r . Note that for any fixed pair of
integers (p, q), eventually none of (p + r, q + 1 − r) and (p − r, q − 1 + r) are pairs of
positive integers for r � 0. In other words, Ep,qr stabilizes for r � 0.

Definition 3.28. Let A be an abelian category and (Ep,qr , dp,qr ) be a spectral sequence
in A. We define the limit Ep,q∞ of the spectral sequence as the stabilizing value of Ep,qr
for r � 0 (depending on p, q). We say that the spectral sequence degenerates at Er if
the differentials dp,qs are zero for all p, q and s ≥ r.

Similaely, one defines subobjects Bp,q
∞ ⊂ Zp,q∞ ⊂ Ep,q0 whose quotient recovers Ep,q∞ .

Next, we wish to produce actual examples of spectral sequences. As the notation itself
suggests, they arise from the notion of double complexes.

Definition 3.29. Let A be an additive category. A double complex in A is given by
objects Ap,q in A and maps dp,q1 : Ap,q → Ap+1,q and dp,q2 : Ap,q → Ap,q+1 such that
dp+1,q

1 ◦ dp,q1 = 0, dp,q+1
2 ◦ dp,q2 = 0, and dp,q+1

1 ◦ dp,q2 = dp+1,q
2 ◦ dp,q1 for all p, q ≥ 0.

Note that Ap,q is a complex as p is fixed and q varies, and also as p varies and q is fixed.
Beware that in the literature the squares of the double complex may be anti-commutative.

Example 3.30. Let M• and and N• be complexes of R-modules over a ring. We obtain
a double complex K•,• = M• ⊗N• with the obvious differentials.

Definition 3.31. Let A be an additive category and A•,• be a double complex. The
associated total complex Tot(A•,•) is given by

Totn(A•,•) =
⊕

n=p+q
Ap,q (3.14)

with differential dn :=
∑

n=p+q(d
p,q
1 + (−1)pdp,q2 )

We want to produce a spectral sequence out of a double complex, and for this we start
by guessing what Bp,q

r ⊂ Zp,qr ⊂ Ep,q0 = Ap,q ought to be. Recall that the total complex
Kn of Ap,q carries a natural filtration

F pKn = ⊕p′≥pAp
′,n−p′ (3.15)
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indexed by p and compatible with the differentials dn. This leads us to define

Zp,qr := grp(F pKn ∩ (dn)−1(F p+rKn+1)) (3.16)

and also

Bp,q
r := grp(F pKn ∩ dn−1(F p+1−rKn−1)) (3.17)

where we set n = p+ q. Intuitively, you should picture the cycles (resp. the boundaries)
as the (p, q)-graded of certain anti-diagonals with first non-vanishing term at Ap,q whose
total differential vanishes in the first r terms (resp. which arise as the first non-vanishing
term in the differential of an anti-diagonal after r steps).

Theorem 3.32. Let (Ap,q, dp,q1 , dp,q2 ) be a double complex with associated total complex
(Kn, dn). Then, Zp,qr and Bp,q

r given by the above formulae are the cycles and boundaries
of a unique spectral sequence Ep,qr with differentials dp,qr induced by dn. Furthermore, Ep,q∞
equals grpHn(K•).

Proof. Let Bn ⊂ Zn ⊂ Kn be the cycles and boudaries of the total complex. Note
that dn−1(F p+1−rKn−1) lies in Zn, so it follows that Bp,q

r ⊂ Zp,qr , and we may define
Ep,qr = Zp,qr /Bp,q

r . We want to show that the differentials dn of the total complex induce
a spectral sequence structure on the Ep,qr . During the proof, we assume that A is the
category of modules over a ring R, so that we can choose elements inside our objects. This
makes it easier to understand what is happening in the proof. The sceptics should either
rewrite the whole thing without taking objects or invoke the Freyd–Mitchell embedding
theorem.

First, we define the maps dp,qr : Ep,qr → Ep+r,q+1−r
r . Note that dn carries F pKn ∩

(dn)−1(F p+rKn+1) to F p+rZn+1 by definition and as dn+1 ◦ dn = 0. Now suppose that
x, y ∈ F pKn ∩ (dn)−1(F p+rKn+1) have the same p-graded component. We see that
d(x− y) ∈ dn(F p+1Kn) ∩ F p+rKn+1, so it has p+ r-graded contained in Bp+r,q+1−r

r by
unraveling the definition of the latter. In particular, passing to the respective gradeds
yields a well-defined map Zp,qr → Ep+r,q+1−r

r . Clearly, if we want to understand the
image of the boundaries Bp,q

r , we may represent it by an element of F pBn, whose image
under the constructed map vanishes as dn ◦ dn−1 = 0. In particular, dn induces a map
dp,qr : Ep,qr → Ep+r,q+1−r

r as desired. It is clear by functoriality that dp,qr ◦ dp−r,q−1+r
r = 0.

Next, we have to prove an equality ker(dp,qr ) = Zp,qr+1/B
p,q
r . The right term is trivially

included in the left one. Conversely, if an element is in the kernel of dp,qr , then it lifts to
some x ∈ F pKn and there must be some y ∈ F p+1Kn such that dn(x−y) ∈ F p+r+1Kn+1.
But x− y has the same p-graded and witnesses its inclusion in Zp,qr+1.

The final equality that we have to prove is im(dp−r,q−1+r
r ) = Bp,q

r+1/B
p,q
r . An element in

the image of dp−r,q+1−r
r arises as the p-graded of F pKn∩dn−1(F p−rKn−1) after unraveling

the definition of Zp−r,q−1+r
r . On the other hand, this is the same as Bp,q

r+1 by definition.
It follows from our calculations that ker(dp,qr )/im(dp−r,q−1+r

r ) = Zp,qr+1/B
p,q
r+1 = Ep,qr+1, and

thus (Ep,qr , dp,qr ) is indeed a spectral sequence.
For the final assertion, we start by noticing that for r � 0 we get F p+rKn+1 = 0 and

F p+1−rKn−1 = Kn−1, so we deduce that grpZn = Zp,q∞ and grpBn = Bp,q
∞ . In particular,

Ep,q∞ = grpHn(K•), as promised. �
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After having seen how to produce spectral sequences out of double complexes, we turn
our attention to the composition of right derived functors.

Definition 3.33. Let A be an abelian category and K• ∈ C≥0(A) be a non-negative
complex. A Cartan-Eilenberg resolution of K• consists of a double complex I•,• in non-
negative degrees and a map ε : K• → I•,0 such that Ip,• (resp. ker(dp,•1 ), resp. im(dp,•1 ),
resp.Hp

1 (I•,•)) is an injective resolution ofKp (resp. ker(dpK), resp. im(dpK), resp.Hp(K•)).

Lemma 3.34. Let A be an abelian category with enough injectives and K• be a non-
negative complex. There exists a Cartan-Eilenberg resolution of K•.

Proof. Define Bp ⊂ Zp ⊂ Kp be the cycles and boundaries in degree p, and set Hp =
Zp/Bp. We inductively construct a Cartan–Eilenberg resolution as follows. Use the horse
shoe lemma to find extend the short exact sequence 0 → Zp → Kp → Bp+1 to a short
exact sequence of injective resolutions

0→ Jp,•Z → Ip,• → Jp+1,•
B → 0. (3.18)

Similarly, we find a short exact sequence of injective resolutions

0→ Jp+1,•
B → Jp+1,•

Z → Jp+1,•
H → 0 (3.19)

extending the short exact sequence 0 → Bp+1 → Zp+1 → Hp+1 → 0. Taking as maps
d•1 : Ip,• → Ip+1,• the obvious composition, it is easy to check that we obtain the desired
double complex. �

Finally, we prove the Grothendieck spectral sequence that describes the composition
of right derived functors under a mild assumption.

Lemma 3.35. Let A, B, and C be abelian categories with enough injectives. Let F :
A → B and G : B → C be left exact functors. If F sends injectives to G-acyclics,
there is a spectral sequence (Ep,qr , dp,qr )r≥0 such that Ep,q2 = RpG ◦RqF (X) converging to
grpRn(G ◦ F )(X) for a natural filtration.

Proof. Let X → I• be an injective resolution and choose a Cartan-Eilenberg resolution
F (I•) → J•,• using Lemma 3.34. We now consider the double complex G(J•,•) and
study the associated spectral sequence (Ep,qr , dp,qr ). Since the cycles and boundaries of
the complex Jp,• are injective, we see that the first page Ep,q1 coincides with G(Hq(Jp,•)).
Then, we use that Hq(Jp,•) is an injective resolution of RqF (X) to deduce that Ep,q2 =
RpG ◦ RqF (X). Finally, we look at the spectral sequence (tEp,qr , dp,qr ) associated to the
transpose of I•,• (i.e., the double complex obtained by switching rows and columns). The
first page tEp,q1 is given by RqG ◦ F (I•) because F (Ip)→ Jp,• is an injective resolution.
Since F (Ip) is G-acyclic, we have Rq ◦ F (I•) = 0 if q > 0 and otherwise equal to
G(F (I•)), so in the second page we get a degeneration tEp,q2 = Rn(G ◦ F )(X). Since
the total complex of I•,• is invariant under transposition, we deduce that Ep,q∞ are the
graded pieces of a certain filtration of tEp,q∞ = Rn(G ◦ F )(X). �

4. Coherent cohomology

4.1. Quasi-coherent sheaves. In this section, we introduce the abelian category of
quasi-coherent sheaves on a scheme X. Before doing this, we start with the abelian
category of OX -modules.
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Definition 4.1. Given a scheme X, let ShvX be the abelian category of abelian sheaves
on X. We define the abelian category ModX as the (non-full) subcategory of ShvX whose
objects are equipped with an OX -module structure and whose morphisms respect the
latter.

By an OX -module structure on an abelian sheaf F , we mean a map OX ⊕ F → F
making F(U) into an OX(U)-module for every open set U ⊂ X. The category ModX
inherits a zero object from ShvX given by 0(U) = 0 on every open subset U ⊂ X.
Similarly, the biproduct in ModX is given by the direct sum of abelian sheaves and this
yields an additive category. Kernels of maps ϕ : F → G of OX -modules exist and are
computed in the underlying category of presheaves, i.e., ker(ϕ)(U) := ker(ϕ(U)). The
same is not true for cokernels, because the cokernel presheaf does not have to be sheaf,
but we let coker(ϕ) be instead the sheafification, and this is still an OX -module. One
can see, e.g. by computing stalks, that ModX is an abelian category.

Let f : X → Y be a map of schemes. We get a pair of adjoint functors (f−1, f∗)
between ShvX and ShvY . Concretely, f∗F(V ) = F(f−1(V )) for all open V ⊂ Y , and
f−1G(U) = colimV⊃f(U)G(V ) for all open U ⊂ X. Note that f∗ is left exact, calculating
sections explicitly and using that the kernel is computed on presheaves, while f−1 is
exact, because it preserves stalks. However, f−1 does not preserve O-modules, so we
correct this by defining the pullback f∗ := f−1 ⊗f−1OY

OX , where ⊗ means sheafifying
the termwise tensor product at the presheaf level. We get a pair (f∗, f∗) of adjoint
functors between ModX and ModY , but now f∗ is at most right exact.

Note that global sections s ∈ F(X) of an OX -module F correspond bijectively to
maps OX → F by evaluating at 1.

Definition 4.2. An OX -module F is generated by global sections if there exists a sur-
jection ⊕IOX → F for some set I.

Given a global section s ∈ F(X), we define its support supp(s) as the set of points
x ∈ X such that the stalk sx is non-zero. The above definition signifies that we can find
global sections si ∈ F(X) whose supports form an open cover ofX. The usefulness of this
notion will become clear once we work with ample line bundles. These represent some
notion of positivity for invertible OX -modules (i.e., those that are locally isomorphic to
OX) on proper schemes and a theorem of Serre asserts that every OX -module becomes
globally generated upon tensoring with sufficiently large powers of ample line bundles.

Now, we can finally define quasi-coherent OX -modules.

Definition 4.3. Let X be a scheme. An OX -module F is a quasi-coherent sheaf of
OX-modules if every point x ∈ X admits an open neighbourhood x ∈ U ⊂ X such that
F|U is the cokernel of a map ⊕

J

OU →
⊕
I

OU (4.1)

The full subcategory of ModX consisting of quasi-coherentOX -modules is denoted QCohX .

In particular, X is covered by open sets U such that F|U has a presentation by free
modules, i.e. a right exact sequence⊕

J

OU →
⊕
I

OU −→ F|U −→ 0. (4.2)
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One can show from this definition that QCohX is stable under finite direct sums, but not
clearly under infinite direct sums, because U might depend on F a priori. Fortunately,
this category has all the desired properties, thanks to the following observation in the
affine case.

Theorem 4.4. Let X be an affine scheme and R = Γ(X,OX). The assignment M 7→
M ⊗R OX defines an equivalence between ModR and QCohX with inverse given by F 7→
F(X).

Proof. Let us first show that M ⊗R OX is quasi-coherent. We can choose a presentation
RJ → RI → M → 0 for M by choosing generators for M and then generators for
the relations ideal. Since tensoring is a right exact operation, we conclude that our
induced OX -module admits a global presentation. Descent theory actually implies that
no sheafification is needed in defining M ⊗R OX , i.e., the tensor presheaf is already a
sheaf. In a more elementary fashion, we have an exact complex

0→ R→ ⊕1≤i≤nR[f−1
i ]→ ⊕1≤i≤j≤nR[(fifj)

−1]→ · · · → R[(f1 . . . fn)−1]→ 0 (4.3)

of flat modules (hence acyclic for ⊗R) by the sheaf property of OX , so it remains exact
upon tensoring with M .

Let F be a globally presented OX -module. Using the fact that X is quasi-compact,
one can show that the map α : ⊕JOX → ⊕IOX is defined by global sections, i.e., it
comes from α(X) : ⊕JR→ ⊕IR by tensoring with OX . By right exactness of the tensor
product, we see that F equals coker(α(X)) ⊗ OX . Note that the global sections of F
equal coker(α(X)) by the previous paragraph.

Suppose now that F is an arbitrary OX -module. Let ri ∈ R be a collection of elements
in R spanning the unit ideal and such that the restriction of F to the principal open set
D(r−1

i ) admits a presentation. We get R[r−1
i ]-modules Mi = F(D(ri)) equipped with

isomorphisms Mi[r
−1
j ] ' Mj [r

−1
i ] of R[(rirj)

−1]-modules satisfying a cocycle condition
for varying i, j, k. This defines a descent datum in a sense to be seen later and it is
effective, so it arises from a unique R-module M up to isomorphism. In particular, we
get a map M ⊗R OX → F that is an isomorphism on an open cover, and thus itself an
isomorphism by the glueing property of sheaves. �

Next, we examine preservation of quasi-coherence under pullback and pushforwards.

Lemma 4.5. Pullback f∗ along a map f : X → Y of schemes preserves quasi-coherence.

Proof. Shrinking Y , we may assume G is globally presented. Since f∗ is right exact, so
it also preserves arbitrary direct sums, and f∗OY = OX , we see that f∗G is also globally
presented. �

Pushforwards do not necessarily preserve quasi-coherent modules, at least not until
imposing some finiteness conditions on our morphisms. Recall that a map of schemes is
qcqs if it is quasi-compact (i.e., it preserves quasi-compactness under fiber products) and
quasi-separated (i.e., the diagonal is quasi-compact).

Lemma 4.6. Let f : X → Y be a qcqs map of schemes. Then, f∗ preserves quasi-
coherence.



ALGEBRAIC GEOMETRY II 33

Proof. We may assume that Y is affine and thus X is a qcqs scheme by assumption
on f . First, let us treat the case where X is also affine. Then, we know that f∗F =
F(X) ⊗OX(X) OX , so it suffices to show quasi-coherence of f∗OX . By definition of the
fiber product, f∗OX(V ) = OX(f−1(V )) = OX(X) ⊗OY (Y ) OY (V ), which implies quasi-
coherence.

In the general case, let Ui be a finite affine open cover of X and Vijk be a finite affine
open cover of the intersections Ui ∩ Uj . We have a left exact sequence

0→ f∗F → ⊕if∗F|Ui
→ ⊕ijkf∗F|Vijk (4.4)

as one sees by checking on stalks. The morphism f becomes affine when restricted to
the Ui or the Vijk, and hence the two left terms of the complex are quasi-coherent. Since
quasi-coherent sheaves form an abelian category, we deduce our claim. �

Next, we impose a finiteness condition on our quasi-coherent sheaves

Definition 4.7. LetX be locally Noetherian. A coherent OX -module is a quasi-coherent
sheaf on X which is locally finitely presented, i.e., the local presentations can be chosen
so that I and J are finite. The full subcategory of QCohX whose objects are coherent is
denoted by CohX .

Lemma 4.8. The category CohX is abelian.

Proof. It is clearly additive, as it is stable under finite direct sums. For the existence of
kernels and cokernels, we can construct these locally. If X is an affine Noetherian scheme,
then QCohX is equivalent to ModR and it is easy to see, because finitely presentedness
descends, that CohX is equivalent to the subcategory of finitely presented R-modules,
which is abelian by the noetherianness assumption. �

Lemma 4.9. Pullback f∗ along maps f : X → Y of locally noetherian schemes preserves
coherence.

Proof. Going back to our proof of stability of quasi-coherence, we see that the finiteness
of the presentations is clearly also preserved under pullback. �

Note that f∗ for maps of affine schemes corresponds to restricting a module along a
homomorphism of rings, which does not preserve finiteness in general. For proper maps,
this becomes salvageable. Unfortunately, the method of proof is inductive and one has
to show simultaneously that all the derived functors Rif∗ preserve coherence, which we
have not yet defined.

4.2. Higher direct images and Čech cohomology. The first thing we need to do is
verify the existence of enough injectives in ShvX .

Lemma 4.10. Let X be a scheme. Then ShvX has enough injectives.

Proof. The category Ab of abelian groups has enough injectives and we will not review
nor prove this fact. Let F be an abelian sheaf on X. The stalk Fx is an honest abelian
group, so we can find a monomorphism Fx → Ix with Ix being an injective abelian group.
Define the product I :=

∏
x∈X ix,∗Ix of skyscraper sheaves, where ix,∗ : Spec(κ(x))→ X

is the natural map. As Fx = i−1
x F , we get a map F → ix,∗Ix by adjunction. These

assembles into a natural map F → I because products are limits. To check that it is a
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monomorphism, we can do it on stalks, and it follows already from injectivity of Fx → Ix.
It suffices to check that I is injective. As products preserve injectivity, we are reduced to
considering the skyscraper sheaves ix,∗Ix. But here, we notice that by adjunction, maps
G → ix,∗Ix correspond bijectively to maps Gx → Ix, so we can verify injectivity inside
abelian groups, where it is a given. �

Definition 4.11. Let X be a scheme. We define H i(X,−) : ShvX → Ab to be the
i-th right derived functor of Γ(X,−). If f : X → Y is a morphism of schemes, we let
Rif∗ : ShvX → ShvY be the i-th right derived functor of f∗ : ShvX → ShvY .

Because both functors Γ(X−) and f∗ agree whether they are taken on ShvX or ModX
or even QCohX , we will often restrict them to the previous smaller categories of modules.
One shows that Rif∗ lands in ModY when restricted to ModX by choosing the injective
abelian groups Ix to have an OX,x-module structure and the maps Fx → Ix to be OX,x-
linear.

Next, we want to understand how local the definition of Rf∗ is, i.e., what happens
when we replace Y by an open cover.

Lemma 4.12. Let f : X → Y be a morphism of schemes and M be an OX-module.
Then, Rif∗M is the sheafification of the presheaf V 7→ H i(f−1(V ),M).

Proof. LetM→ I• be an injective resolution in ModX . First, note that if j : U → X is
an open immersion of schemes, then j∗ is exact and preserves injective abelian sheaves.
In particular, j∗M → j∗I• is an injective resolution of OU -modules. This allows us to
construct natural transition maps making the assignment V 7→ H i(f−1(V ),M) into an
actual presheaf.

On the other hand, we know Rif∗M = H i(f∗I•). We can take this cohomology
by sheafifying V 7→ H i(I•(f−1V )). But the last term here is by definition equal to
H i(f−1(V ),M). �

Corollary 4.13. Let f : X → Y be a morphism of schemes, i : V → Y an open immer-
sion, and g : f−1(V )→ V , j : f−1(V )→ X be the base changed morphisms. We have an
isomorphism

Rpg∗j
∗ ' i∗Rpf∗ (4.5)

of functors.

Proof. This follows immediately from Lemma 4.12. �

Let X be a scheme and U = {Ui : i ∈ I} be an open cover of X. To an abelian sheaf
F on X, we associate its Čech complex

Čp(U ,F) =
∏

(i0,...,ip)∈Ip+1
F(Ui0...ip). (4.6)

where we set Ui0...ip = Ui0 ∩ . . . ∩ Uip . For s ∈ Čp(U ,F) we denote by si0...ip its value in
F(Ui0...ip). We define the differentials by the formula

dp(s)i0...ip+1 =
∑p+1

j=0
(−1)jsi0...̂ij ...ip+1

|Ui0...ip+1
(4.7)

It is straightforward to see that d ◦ d = 0, so Č•(U ,F) is a complex.
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Definition 4.14. Let X be a scheme with an open cover U and F be an abelian presheaf
on X. The complex Č•(U ,F) is the Čech complex associated to F and the open cover U .
Its cohomology groups Ȟ i(U ,F) := H i(Č•(U ,F)) are called the Čech cohomology groups
associated to F and the cover U .

Lemma 4.15. An abelian presheaf F on a scheme is a sheaf if and only if F(U) →
Ȟ0(U ,F) is an isomorphism for every open cover U of every open U ⊂ X.

Proof. This is obvious after unwinding the definitions of the Čech complex. �

Lemma 4.16. Let X be a scheme with an open cover U and let F be an abelian presheaf
on X. If Ui = X for some i ∈ I, then the natural map F(X)→ Č•(U ,F) is a homotopy
equivalence.

Proof. Write i−1 for the specific element of I such that X = U−1. Observe that Ui0...ip =
Ui0...̂ij ...ip if ij = i−1. Also the claim is equivalent to proving that the augmented complex
[F(X)→ Č(U ,F)] is nullhomotopic. Let us define a nullhomotopy

h :
∏

i0...ip+1

F(Ui0...ip+1) −→
∏

i0...ip
F(Ui0...ip) (4.8)

by the rule h(s)i0...ip = si−1i0...ip . We get

dh(s)i0...ip = si0...ip +
∑p

j=0
(−1)j+1sii0...̂ij ...ip (4.9)

and also
hd(s)i0...ip =

∑p

j=0
(−1)jsii0...̂ij ...ip (4.10)

and the sum of these maps equals the identity. �

We can moreover regard the Čech complex as a functor PModX → C(ModOX(X))
which is exact because we are working with presheaves. It also follows from the associated
long exact sequence that F 7→ Ȟn(U ,F) define a δ-functor for varying n. To prove
effaceability, we need to show that the higher Čech cohomology of injectives vanish, so
we need to realize the Čech complex in terms of Hom.

First, notice that for any open immersion j : U → X, we have a left adjoint j! to
the exact functor j∗ on the categories of pre-modules PMod, so it preserves projectives.
Because OU corepresents the functor F 7→ F(U), which is exact at the presheaf level, we
get the projective object j!OU in PModX .

Lemma 4.17. Given an open cover U of a scheme, we consider the complex K(U)•
of pre-modules such that K−p(U) = ⊕i0...ipji0...ipOUi0...ip

and d−p given by the obvious
maps times (−1)j when deleting the j-th index. Then, we have functorial isomorphisms
HomOX

(K•(U),F) = Č•(U ,F) in PModX .

Proof. This is a simple exercise in using the adjoint pair (j!, j
∗). �

Lemma 4.18. Let X be a scheme with an open cover U . The complex K•(U) has vanish-
ing cohomology in negative degrees and its 0-th cohomology equals OU := im(⊕j!OUi →
OX) as a map of presheaves.
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Proof. Consider the augmentation [K•(U)→ OU ]. We claim that this is nullhomotopic.
It can be done after evaluating at any open V ⊂ X. This leads to a partition of I
according to whether V ⊂ Ui holds or not, and the non-vanishing terms of K−p are
indexed by (p+ 1) many indexes of the first kind.

Pick i−1 such that V ⊂ U−1 (if it does not exist, then the augmented complex vanishes
at V ), and define a nullhomotopy h via the following rule: h(s)i0...ip+1 vanishes unless
i0 = i−1 in which case it equals si1...ip+1 . We can verify that this is a nullhomotopy via a
straightforward calculation, as for the acyclicity of the augmented Čech complex in the
presence of a degeneracy. �

Lemma 4.19. Let X be a scheme with an open cover U . The Čech δ-functor Ȟp(U ,−)
is universal.

Proof. By the same argument as for ShvX and ModX , we can show that both PShvX and
PModX have enough injectives. Note that Ȟ0(U ,−) is a left exact functor PModX →
ModOX(X), so it admits right derived functors.

Let I be an injective pre-module onX. By Lemma 4.17 we havee HomOX
(K•(U), I) '

Č•(U , I). On the other hand, K(U)• is quasi-isomorphic to OU [0] by Lemma 4.18. Using
injectivity of I, we see that Ȟ i(U , I) = 0 for all i > 0. and our δ-functor is universal. �

Let us note that Čech cohomology vanishes on injective modules.

Lemma 4.20. Let U be an open cover of a scheme X and I be an injective OX-module.
Then Ȟp(U , I) vanishes for all p > 0.

Proof. Because sheafification is exact, its right adjoint forgetful functor preserves injec-
tives, so this reduces to Lemma 4.19. �

Lemma 4.21. Let X be a scheme and consider the forgetful functor i : ModX → PModX .
This is left exact with right derived functor given by the cohomology presheaves U 7−→
Hp(U,F).

Proof. Left exactness is well known at this point. Choose an injective resolution F → I•.
By definition Rpi is the p-th cohomology presheaf of the complex I•. But that coincides
exactly with Hp(U,F). �

Lemma 4.22. Let U be an open cover of a scheme. For any OX-module F , there is a
spectral sequence (Er, dr)r≥0 with

Ep,q2 = Ȟp(U , Rqi(F)) =⇒ Hp+q(X,F) (4.11)

functorial in F .

Proof. This is a Grothendieck spectral sequence applied to the composable functors i
and Ȟ0(U ,−) (recall that the second one was defined indeed on PModX). Because F is
a sheaf, we know that composing them yields the global sections functor F → H0(X,F),
see Lemma 4.15. Also, we know that i(I) is Čech acyclic by Lemma 4.20 and that
Ȟp(U ,−) equal the right derived functors of Ȟ0(U ,−) by Lemma 4.19. In total, we may
in fact invoke the Grothendieck spectral sequence. �
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Corollary 4.23. Let U be an open cover of a scheme X. Let F be an OX-module and
assume that H i(Ui0...ip ,F) = 0 for all i > 0, all p ≥ 0 and all i0, . . . , ip ∈ I. Then
Ȟp(U ,F) = Hp(X,F).

Proof. This is an immediate consequence of Lemma 4.22. Indeed, the term Ep,q2 = 0
vanishes as soon as q > 0. Hence the spectral sequence degenerates at E2 and the result
follows. �

Lemma 4.24. Let X be a scheme and

0→ F → G → H → 0 (4.12)

be a short exact sequence of OX-modules. If there exists a cofinal system of open covers
U of X such that Ȟ1(U ,F) = 0, then the map G(X)→ H(X) is surjective.

Proof. Take a global section s ∈ H(X). By assumption, we can find an open cover U of
X such that the first Čech cohomology Ȟ1(U ,F) vanishes the restriction of s to Ui comes
from some si ∈ G(Ui). Taking the difference of the restrictions si0i1 = si1 |Ui0i1

− si0 |Ui0i1

to Ui0i1 gives rise to an element of F(Ui0i1) by hypothesis. Since Ȟ1(U ,F) vanishes, we
can find sections ti ∈ F(Ui) such that si0i1 = ti1 |Ui0i1

− ti0 |Ui0i1
. Now, if we modify the

si by subtracting the ti, they now glue to a global section of G lifting s. �

Lemma 4.25. Let X be a scheme and F be an OX-module such that Ȟp(U ,F) vanishes
for all p > 0 and all open covers U of open subschemes U ⊂ X. Then, Hp(U,F) = 0 for
all p > 0.

Proof. Note that F is Čech-acyclic for any open cover of an open subscheme of X.
Choose an injection F → I into an injective OX -module. By Lemma 4.20, we also know
that I is Čech-acyclic for all open covers. We denote by Q the quotient of the previous
injection. Notice that forming the quotient commutes with taking sections over any open
U ⊂ X, because of the Čech acyclicity of F . In particular, we get a short exact sequence
of presheaves, and an associated long exact sequence of Čech cohomology for any open
cover U . This implies that Q is also Čech-acyclic.

Next, we look at the long exact sequence of cohomology at any open U ⊂ X. Since I
is injective, we have Hn(U, I) = 0 for n > 0. In particular, Hn(U,F) ' Hn−1(U,G) for
all n > 1. We also know that H0(U, I)→ H0(U,Q) is surjective by a preceding lemma,
so also H1(U,F) = 0. Note that also H1(U,Q) = 0 by repeating the same argument for
Q instead, so we get vanishing of higher cohomology by induction. �

Actually, if we inspect the proof, we notice that it would be enough to have Čech
acyclicity for a cofinal set of open covers of elements in a basis of the Zariski topology of
X. This will be important to reduce most of our tasks to the affine case.

Corollary 4.26. Let f : X → Y be a morphism of schemes and I be an injective
OX-module. Then, both Hp(Y, f∗I) and Rpf∗I vanish for all p > 0.

Proof. Let V ⊂ Y be an open and set U = f−1(V ). For any open covering V of V , we
define similarly its pullback U = f−1(V). It is clear by construction that Čech complexes
commute with pushforward. Thus, we get vanishing of Ȟp(V, f∗I) for all p > 0 by
Lemma 4.20. Then, Lemma 4.25 implies vanishing of Hp(V, f∗I) for all p > 0, and
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finally also of Rpf∗I for all p > 0 as this is the sheaf associated to the cohomology
presheaf V 7→ Hp(V, f∗I). �

Flat pushforwards actually preserve injectivity, because the left adjoint is exact. We
are now ready to define the Leray spectral sequence.

Lemma 4.27. Let f : X → Y be a morphism of schemes and F be an OX-module.
There is a spectral sequence

Ep,q2 = Hp(Y,Rqf∗(F)) =⇒ Hp+q(X,F) (4.13)

functorial in F .

Proof. This is just the Grothendieck spectral sequence applied to the composition Γ(X,−) =
Γ(Y,−) ◦ f∗. This is valid, because f∗ maps injectives to Γ(Y,−)-acyclics. �

Corollary 4.28. Let f : X → Y be a morphism of ringed spaces. Let F be an OX-
module.

(1) If Rqf∗F = 0 for q > 0, then Hp(X,F) = Hp(Y, f∗F).
(2) If Hp(Y,Rqf∗F) = 0 for p > 0, then Hq(X,F) = H0(Y,Rqf∗F).

Proof. These conditions force the Leray spectral sequence to degenerate at E2. �

There is also a relative version of the Leray spectral sequence.

Lemma 4.29. Let f : X → Y and g : Y → Z be morphisms of schemes, and F be an
OX-module. There is a spectral sequence

Ep,q2 = Rpg∗(R
qf∗F) =⇒ Rp+q(g ◦ f)∗F (4.14)

functorial in F .

Proof. This is a Grothendieck spectral sequence for the composition (g◦f)∗ = g∗◦f∗. We
just need to verify that f∗ maps injectives to g∗-acyclics. But we say that f∗I is Γ(V,−)-
acyclic for all opens V ⊂ Y , so by sheafifying we get also that Rpg∗(f∗I) vanishes for
p > 0. �

The next order to business is to show vanishing of Čech cohomology on standard affine
covers. This is at the heart of comparing abstract cohomology to Čech cohomology of
quasi-coherent sheaves.

Lemma 4.30. Let U be a standard open cover of an affine scheme X and F be a quasi-
coherent OX-module. Then, Ȟp(U ,F) = 0 for all p > 0.

Proof. We set X = Spec(A) and Ui = D(fi) where the finitely many fi ∈ A generate
the unit ideal. If M = F(X), we also have F = M⊗A OX . Here, the tensor product
can be taken inside presheaves, and there’s no need to sheafify. Now, the Čech complex
Č•(U ,F) is given by∏

i0
Mfi0

→
∏

i0i1
Mfi0fi1

→
∏

i0i1i2
Mfi0fi1fi2

→ . . . (4.15)

We now show exactness of the augmented complex by addingM on the left. It is enough
to show that this holds after localizing at each of the fi, as they generate the unit ideal.
But we get as a result the augmented complex [M [f−1

i ] → Č•(U [f−1
i ],F [f−1

i ])] which
carries an extra degeneracy, so we already know it is nullhomotopic. �
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Now we get vanishing of higher cohomology on affines.

Lemma 4.31. Let X be an affine scheme and F be a quasi-coherent OX-module. Then,
Hp(X,F) = 0 for all p > 0.

Proof. We are going to apply a variant of Lemma 4.25 for a given basis of the topology
consisting of standard opens and their corresponding covers. Since these are cofinal within
the set of all covers, we are reduced to verifying Ȟ(U ,F) for a standard open cover of a
standard affine open of X. But this was the content of the previous lemma. �

We also get a relative analogue of affine vanishing.

Lemma 4.32. Let f : X → S be an affine morphism of schemes, and F be a quasi-
coherent OX-module. Then, Rif∗F = 0 for all i > 0.

Proof. We know already thatRif∗F is the sheafification of the presheaf V 7→ H i(f−1(V ),F|f−1(V )).
We may therefore assume S = V is affine, so X is also affine, and the previous lemma
gives vanishing of H i(X,F). �

The following two lemmas explain when Čech cohomology can be used to compute
cohomology of quasi-coherent modules.

Proposition 4.33. Let U be an affine open cover of a separated scheme X. For any
quasi-coherent sheaf F , we have Ȟp(U ,F) = Hp(X,F) as Γ(X,OX)-modules for all p.

Proof. Note that the intersections Ui0...ip appearing in the Čech complex are affine, be-
cause X is separated. In view of Lemma 4.31, we deduce that the Čech spectral sequence
degrenerates, yielding the desired equality. �

As an application of this comparison result between Čech cohomology and coherent
cohomology, we prove finiteness of cohomological dimension.

Corollary 4.34. Let X be a separated quasi-compact scheme. Then, Hn(X,F) vanishes
for all n > C and all quasi-coherent F , where C is a constant depending only on X.

Proof. Let U be a finite affine open covering. By separatedness, the intersections Ui0...ip
are all affine. The alternating Čech complex Č•alt(U ,F) obtained by supressing repeated
indexes, vanishes beyond a fixed degree that depends only on U , so the same holds for
Čech cohomology. Now, we simply apply the comparison result. �

4.3. Coherent cohomology of projective space. In this section, we are going to
discuss the cohomology of coherent sheaves on projective schemes. In order to start, let
us recall how to construct these sheaves via graded modules.

Let S = ⊕d≥0Sd be a graded ring such that Sd are finite S0-modules and S is generated
by S1 as an S0-algebra. We know how to construct a proper scheme Proj(S) by glueing
the standard opens D+(f). These are the affine spectra of the rings S[f−1]0 given as the
degree 0 part of the localization of S at an homogeneous element f ∈ Sd for some d ≥ 1.

Let M = ⊕dMd be a graded S-module. We consider the sheaf M on Proj(S) whose
values on a standard open D+(f) are given by M [f−1]0. One can show that these glue
on standard open covers as in the case of the structure sheaf OProj(S). As this definition
is compatible with localization, we see thatM is quasi-coherent.
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Note that we have a twisting functor (n) on graded modules that is given as follows
M(n)d = Mn+d with the obvious graded action of S. This yields a natural map

M −→
⊕
n

Γ(X, M̃(n)). (4.16)

of graded S-modules. More generally, we have the following definition.

Definition 4.35. Let S be a graded ring and X = Proj(S). We define the n-th twist
OX(n) of the structure sheaf as the quasi-coherent sheaf associated with S(n). For any
quasi-coherent sheaf F on X, we set F(n) = F ⊗OX

OX(n).

Since S(n) ⊗S S(m) = S(n + m), we can construct an isomorphism OX(n) ⊗OX

OX(m) ' OX(n + m). It follows that OX(n) is an invertible sheaf on X, with inverse
given by OX(−n). Another way of seeing this is by noticing that the map S → S(n) for
n > 0 given by multiplication by f ∈ Sn is an isomorphism over D+(f).

Lemma 4.36. Let S be a finitely S1-generated graded S0-algebra and X = Proj(S). Let
F be a quasi-coherent sheaf on X and set M =

⊕
n∈Z Γ(X,F(n)). Then there is a

canonical isomorphismM' F functorial in F .
Proof. We send an element mf−n ∈ M(D+(f)) with d = deg(f) to the corresponding
section of F(D+(f)) obtained by reversing the map F → F(nd) over D+(f). One
checks easily that this recipe glues. Let us check that this map is injective. We consider
g1, . . . , gn ∈ S1 generating S as an S0-algebra, so that X is covered by D+(gi). If
mf−n ∈ M(D+(f)) vanishes after mapping it to F , we conclude that m as a global
section of F(nd) vanishes on the distinguished affine open D(fg−1

i ) of the affine scheme
D+(gi): this implies femg−(n+e)d

i is the zero element in F((n+ e)d)(D+(gi)) for e� 0.
Since the gi cover X, this means that the global section fem of F((n + e)d) simply
vanishes, so the same holds true for mf−n = femf−e−n over D+(f).

Now, we check surjectivity. Let t′ ∈ Γ(D+(f),F) and observe that fet is the image of
some ti ∈ Γ(D+(gi),F(ed)) for e � 0. Note that ti = tj inside Γ(D+(fgigj),F(ed)), so
by the preceding injectivity, we deduce that ti = tj as elements of Γ(D+(fgigj),M(ed)).
This translates into an equality fe′ti = fe

′
tj in Γ(D+(gigj),M((e+ e′)d)), so they glue

to a global section t ofM((e+ e′)d) such that tf−e−e′ ∈ Γ(D + (f),M) lifts t′. �

Now, we are going to specialize to the case where S = R[T0, . . . , Tn] and thusX is the n-
dimensional projective space PnR := Proj(R[T0, . . . , Tn]) over an arbitrary ring R. We dis-
pose of natural line bundles OPn

R
(d) on PnR. The degree d summand R[T0, . . . , Tn]d is finite

free over R of rank
(
n+d
d

)
, and has an obvious basis consisting of monomials T e00 . . . T enn

with ei ≥ 0 and
∑
ei = d. Similarly, we consider the graded R-algebra R[T−1

0 , . . . , T−1
n ]

with T−1
i in degree −1. In particular, its graded module T−1

0 . . . T−1
n R[T−1

0 , . . . , T−1
n ]

vanishes in degrees ≥ −n, and is free over R of rank
( −d−1
−d−n−1

)
for d ≤ −n− 1, with basis

consisting of monomials T e00 . . . T enn with ei < 0 and
∑
ei = d.

Lemma 4.37. Let R be a ring and n ≥ 0 a non-negative integer. We have

Hq(Pn,OPn
R

(d)) =


R[T0, . . . , Tn]d if q = 0

0 if 0 < q < n
T−1

0 . . . T−1
n R[T−1

0 , . . . , T−1
n ]d if q = n
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as R-modules.

Proof. We will use the standard affine open covering U = D+(Ti)i=0,...,n ofPn
R to compute

the cohomology using the Čech complex

Čp(U ,OPn
R

(d)) =
⊕

i0<...<ip
(R[T0, . . . , Tn, T

−1
i0
, . . . T−1

ip
])d

with differentials given by d(s)i0...ip+1 =
∑p+1

j=0(−1)jsi0...̂ij ...ip+1
. Note that the complex is

naturally graded by Zn+1 via the exponents of the Ti, so it suffices to compute the graded
pieces Čpe for any vector e ∈ Zn+1. For such an e, assume

∑
ei = d and let Nege ⊂ [n]

be the set of negative exponents ei < 0. Then, it follows that

Čpe =
⊕

Nege⊂{i0<...<ip}
R · T e00 . . . T enn (4.17)

If Nege = [n], then the e-graded complex is concentrated in degree n and satisfies Čne =
R · T e00 . . . T enn . This matches our claim in degree e. If instead Nege = ∅, then Čpe is the
sum of several copies of R · T e00 . . . T enn indexed by i0 < . . . < ip. But this is clearly the
Čech complex of the trivial cover of Spec(R) by itself repeated n times, so its cohomology
vanishes for q > 0 and is given by a single copy of R · T e00 . . . T enn when q = 0. This also
matches our claim.

To finish the proof of the lemma we have to show that the complexes Č•e are acyclic
when ∅ ( Nege ( [n]. Pick an index i−1 6∈ Nege which exists by hypothesis and define
the homotopy map h : Čp+1

e → Čpe given by the rule

h(s)i0...ip =

 si−1i0...ip if i−1 < i0
(−1)asi0...ia−1i−1ia...ip if ia−1 < i−1 < ia

(−1)psi0...ip if ip < i−1 < n
(4.18)

Note that this is well defined as the negative exponents are contained in {i0, . . . , ip} if
and only if they also are after adjoining i−1. We claim that hd+ dh = id, so h defines a
nullhomotopy of the identity and the complex Č•(~e) is nullhomotopic, thus acyclic.

To check this claim, suppose first that ia−1 < i−1 < ia for some 1 ≤ a ≤ p. Then we
have on the one hand

dh(s)i0...ip =
∑a−1

j=0
(−1)a+jsi0...̂ij ...i−1...ip

+si0...ip+
∑p

j=a
(−1)a+j+1si0...i−1...̂ij ...ip

(4.19)

and on the other hand we get

hd(s)i0...ip =
∑a−1

j=0
(−1)j+a−1si0...̂ij ...i−1...ip

+
∑p

j=a
(−1)j+asi0...i−1...̂ij ...ip

(4.20)

the two of which sum to si0...ip as desired. The other cases are similar and left to the
reader �

We can now verify Serre duality essentially by hand for line bundles on projective
space. We have a pairing of free R-modules

R[T0, . . . , Tn]× T−1
0 . . . T−1

n R[T−1
0 , . . . , T−1

n ] −→ R (4.21)

which is defined by sending (f, g) to the T−1
0 . . . T−1

n -coefficient of fg. In other words, the
basis T e00 . . . T enn is dual to T−1−e0

0 . . . T−1−en
n . Using this pairing, we can deduce from



42 JOÃO LOURENÇO

Lemma 4.37 that

Hn(PnR,OPn
R

(d)) ' HomR(H0(PnR,OPn
R

(−d− n− 1)), R) (4.22)

4.4. Ample line bundles. In this section, we discuss the crucial notion of ampleness
in algebraic geometry. This is a positivity condition on line bundles that controls the
existence of many global sections and vanishing of higher cohomology. This matches our
calculations of cohomology of line bundles in PnR, as we saw that this is holds for positive
d (and a few negative d), but we want to formulate it abstractly. Note that a notion of
positivity, whatever it may be, must be stable under rescaling. In our case, this means
taking powers of a line bundle should not change its ampleness. Recall that a line bundle
L on a scheme X is a locally free sheaf of rank 1. In the literature, this is also called an
invertible sheaf.

Lemma 4.38. Given a line bundle L on a scheme X, and a global section s of L, the
set Xs = {x ∈ X | s 6∈ mxLx} is open.

Proof. Note that the global section corresponds to a map s : OX → L. If its fiber at
x does not vanish, then the stalk sx is surjective, and hence necessarily bijective by
torsion-freeness. In particular, s is an isomorphism in an open neighborhood of x. �

Note that we have also Xs ∩ Xs′ = Xss′ , where ss′ denotes the section s ⊗ s′ ∈
Γ(X,L ⊗ L′) (check this).

Definition 4.39. Let X be a qcqs scheme and L be a line bundle on X. We say L is
ample (resp. semi-ample) if for every x ∈ X there exists an n ≥ 1 and s ∈ Γ(X,L⊗n)
such that Xs is an affine (resp. not necessarily affine) open neighborhood of x.

It is immediate that L is ample (resp. semi-ample) if and only if L⊗n is ample
(resp. semi-ample), and that ampleness is stable under affine pullback, whereas semi-
ampleness is stable under arbitrary pullback. Also note that L is semi-ample if and only
if a power of it is globally generated.

Lemma 4.40. Let s be a global section of a line bundle L on a scheme X. Then, the
open immersion Xs → X is affine.

Proof. We may and do assume that X is the affine spectrum of a ring R and that L = OX
is the structure sheaf. Then, s corresponds to an element of R, and its non-vanishing
locus is a distinguished affine open of X. �

Lemma 4.41. Let L andM be line bundles on a qcqs scheme X. If L is ample andM
is semi-ample, then L ⊗M is ample.

Proof. Let x ∈ X. Choose n ≥ 1, m ≥ 1, s ∈ Γ(X,L⊗n), and t ∈ Γ(X,M⊗m) such that
x ∈ Xs ∩Xt. This intersection and Xs is affine. Since Xt → X is affine by Lemma 4.40
and Xs is affine by ampleness of L, their intersection is also affine. On the other hand,
we have smtn ∈ Γ(X, (L ⊗M)⊗nm), and we can write Xsmtn = Xs ∩ Xt, so we have
found our affine open neighborhood. �

Lemma 4.42. Let L be an ample line bundle on a qcqs scheme X. Then, X is separated.
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Proof. We are going to use the valuative criterion. Thus, let V be a valuation ring
with fraction field K and consider two morphisms f, g : Spec(V ) → X that agree on
Spec(K). As V is local, there exists (after perhaps raising L to a sufficiently divisible
power) sections s ∈ Γ(X,L), and t ∈ Γ(X,L) such that Xs and Xt are affine, and f
(resp. g) factors through Xs (resp. Xt).

The quasi-coherent module f∗L (resp. g∗L) corresponds to a free V -moduleM (resp.N)
of rank 1, because V is a discrete valuation ring. The associated K-vector spaces are
isomorphic via some ϕ : M⊗V K → N⊗V K as f and g agree when restricted to Spec(K).
Let x ∈M and y ∈ N be the elements corresponding to the pullback of s along f and g,
respectively. We get φ(x⊗ 1) = y⊗ 1 and we know f factors through Xs, so x generates
M and φ identifiesM with yN ⊂ N . By symmetry, we concludeM ' N and y generates
N , so g also factors through Xs. But now we can use the fact that Xs is affine to see
that f and g must agree on the whole of Spec(V ). �

Semi-ampleness is intimately linked with morphisms towards projective schemes.

Lemma 4.43. Let L be a line bundle on a qcqs scheme X and S :=
⊕

n≥0H
0(X,L⊗n) be

the associated graded ring. If L is semi-ample, there is a canonical morphism of schemes
f : X → Y := Proj(S) equipped with maps f∗OY (n) → L⊗n that are isomorphisms for
sufficiently divisible n.

Proof. We define maps S[s−1]0 → O(Xs) by performing the usual trick of dividing by a
section of a line bundle on its non-vanishing locus: this is allowed because s : OX → L is
an isomorphism on Xs. One checks straightforwardly that all these maps glue, and hence
we get a map f : X → Y because the Xs cover X by semi-ampleness of L. Similarly,
one obtains maps f∗OY (n) → L⊗n. To check that they are isomorphisms for suitably
divisible degrees, take n such that L⊗n becomes globally generated. Then, we can see
that f factors through the open locus of Y where OY (n) is invertible and so we get a
surjection f∗OY (n)→ L⊗n of line bundles, and hence an isomorphism. �

The proof generalizes to the case where we have a map ψ : S →
⊕

n≥0H
0(X,L⊗n)

of graded rings such that X is covered by Xψ(s) for s ∈ Sd. This allows us to define
morphisms from X towards PnR in terms of generating global sections of line bundles L.

Lemma 4.44. Let L be a semi-ample line bundle on a qcqs scheme X with associated
graded ring S :=

⊕
n≥0H

0(X,L⊗n). Then, the canonical morphism of schemes f : X →
Proj(S) has dense image.

Proof. Assume that the image of f is not dense. Then, since the opens D+(s) with
s ∈ S+ homogeneous form a basis for the topology on Proj(S), we can find an s such
that f(X) does not meet the non-empty D+(s). In other words, by Lemma 4.43 this
means Xs is empty. In turn, this implies that a power of s is the zero section in L⊗n deg(s),
so actually D+(s) is empty. �

Lemma 4.45. Let L be an ample line bundle on a qcqs scheme X with associated graded
ring S :=

⊕
n≥0H

0(X,L⊗n). Then, the canonical morphism of schemes f : X −→
Proj(S) is an open immersion with dense image. If X is proper over H0(X,OX), then
it is an isomorphism.
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Proof. Choose s1, . . . , sn ∈ S+ homogeneous such that Xsi are affine, and X =
⋃
Xsi .

Say si has degree di. The inverse image of D+(si) under f is Xsi , see Lemma 4.43.
One checks easily by hand that Γ(D+(si),OProj(S)) identifies with Γ(Xsi ,OX), so f
induces an isomorphism Xsi → D+(si). Thus f is an isomorphism of X onto the open⋃
i=1,...,nD+(si) of Proj(S). The image is dense by Lemma 4.44. If X is proper, then so is

the map f , and we just have to notice that dense clopen immersions are isomorphisms. �

Now, we give a different criterion for ampleness in terms of twisted sheaves O(1).

Corollary 4.46. Let X be a proper R-scheme with H0(X,OX) = R. A line bundle L
on X is ample if and only if there is a closed immersion ι : X → PnR for some n such
that ι∗OPn

R
(1) is isomorphic to L⊗m for some m > 0.

Proof. First, note that OPn
R

(1) is ample, because its standard global sections si := Ti
have affine distinguished opens D+(Ti) covering PnR. This shows the converse direction,
because pullback along affine maps preserves ampleness, which is also invariant under
positive powers.

For the forward direction, we can identify X with the projective spectrum of the
graded ring S =

⊕
n≥0H

0(X,L⊗n), and L with OS(1). For some large m, we may
find finitely many global sections si with i = 1, . . . , n of OS(m) such that Xsi cover X.
After replacing L by its m-th power, we may even assume that m = 1. This means
that the irrelevant ideal S>0 ⊂ S has the same radical as the R-algebra generated by
the finitely many si ∈ S1. Note that Xsi is the affine spectrum of S[s−1

i ]0, so the latter
is a finitely generated R-algebra. After picking generators tijs−mi for some m � 0, we
may again replace the original line bundle to assume m = 1. But then we have a graded
map R[T0, . . . , Tn] → S taking Tk to the global sections si and tij of L. One checks
again easily by construction that this defines a closed immersion ι : X → PnR along which
OPn

R
(1) pulls back to L = OS(1). �

Line bundles appearing as pullbacks of O(1) on projective space are called very ample.
Now, we give an even stronger characterization of ampleness.

Proposition 4.47. Let X be proper over H0(X,OX) and L be a line bundle on X. Then
L is ample if and only if, for every coherent sheaf F on X, there exists an integer n0

such that F ⊗OX
L⊗n is globally generated for all n ≥ n0,

Proof. For the converse direction, we let x ∈ X be any point and U ⊂ X be an affine
open neighborhood of x. If I is the coherent ideal sheaf defining some closed subscheme
Z ⊂ X with U as open complement, then we can pick some global section s of I⊗OX

L⊗n
generating it at x. But when considered as a global section of L⊗n, we see that it also
vanishes along Z, so we get Xs ⊂ U . This means we can write Xs = Xs∩U , and it must
be affine because Xs → X is an affine map and U is affine.

Now, we handle the forward direction. By hypothesis, there exists some d > 0 such that
L⊗d is very ample, i.e., arising as OX(1) with respect to a closed immersion ι : X → PnR
with R = H0(X,OX). In order to prove our claim, we may and do replace L by its very
ample d-th power. Indeed, if we apply the result to all F ⊗OX

L⊗j and the very ample
line bundle L⊗d for any j < d, then we get the original result anyway. We therefore refer
to OX(1) instead of L and to the twists F(n) instead of F ⊗OX

L⊗n.
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Let Fm ⊂ F be the subsheaf generated by the global sections of F(m), in other words,
the image of the canonical map Γ(X,F(m)) ⊗ OX(−m) → F . By construction, the
twist Fm(n) is globally generated as soon as n ≥ m. On the other hand, X identifies
with an open subset of Proj(S) with S =

⊕
n≥0H

0(X,OX(n)) and F is the restriction
to X of the quasi-coherent sheaf on Proj(S) associated to the graded S-module M =⊕

nH
0(X,F(n)), so it coincides with the sum of the subsheaves Fm. By coherence, we

have F =
∑

m=1,...,N Fm for some N ≥ 1. It follows that F(n) is globally generated
whenever n ≥ N + 1. �

4.5. Cohomology of coherent sheaves on projective schemes. Next, we discuss
coherent sheaves on Proj(A) where A is a Noetherian graded ring generated by A1 over
A0. We start by handling the case where A = R[T0, . . . , Tn] is a graded polynomial
R-algebra. We are going to prove finiteness of cohomology and Serre vanishing at the
same time.

Proposition 4.48. Let R be a Noetherian ring. For every coherent sheaf F on PnR, we
have the following:

(1) There exists a surjection O(−m)⊕r → F for d� 0 and some r ≥ 0.
(2) For any i, the R-module H i(PnR,F) is finite, and vanishes unless 0 ≤ i ≤ n.
(3) If i > 0, then H i(PnR,F(d)) = 0 for all sufficiently large d� 0.
(4) For any k, the graded R[T0, . . . , Tn]-module

⊕
d≥kH

0(PnR,F(d)) is finite.

Proof. We will use that OPn
R

(1) is an ample line bundle on PnR. This follows directly
from the definition since PnR covered by the standard affine opens D+(Ti). Hence, by our
characterization of ample sheaves, we know that F(m) is globally generated for m� 0.
In other words, there is a surjection OPn

R
(−m)⊕r → F .

Also, PnR is covered by n+ 1 affines, namely the standard opens D+(Ti), i = 0, . . . , n,
so we get H i(PnR,F) = 0 for i ≥ n + 1 for any quasi-coherent sheaf F on PnR, by
Corollary 4.34. Now, we prove finiteness of cohomology for all coherent sheaves on PnR by
descending induction on i. Clearly the result holds for i ≥ n+ 1. Suppose we know the
result for i+1 and we want to show the result for i. Choose a surjection OPn

R
(−m)⊕r → F

and let G be the kernel, which is also a coherent sheaf on PnR. The long exact cohomology
sequence gives an exact sequence

H i(PnR,OPn
R

(−m))⊗r → H i(PnR,F)→ H i+1(PnR,G). (4.23)

By induction assumption the right R-module is finite. We also calculated the cohomology
of line bundles on PnR in Lemma 4.37, and saw that the left R-module is finite. Since R
is Noetherian, it follows immediately that H i(PnR,F) is a finite R-module.

Next, we handle Serre vanishing by descending induction on i. Notice that twisting on
PnR is an exact functor, since it is given by tensoring with a locally free, thus flat sheaf.
Again, the long exact sequence twisted by d gives us

H i(PnR,OPn
R

(d−m))⊕r → H i(PnR,F(d))→ H i+1(PnR,G(d)). (4.24)

By induction assumption, we see the module on the right is zero for d � 0 and by the
computation in Lemma 4.37 the same holds for the left side if i > 0, so we get the desired
assertion.
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Finally, we note that, by Serre vanishing applied to G(d), the R-module M≥k :=
⊕d≥kH0(PnR,F(d)) is a quotient of N≥k := ⊕d≥kH0(PnR,O(−m))⊕r for k � 0. Also if
l < k, we have that M≥l is an extension of M≥k by a finite R-module due to finiteness of
cohomology. Hence, to get finiteness of M≥k as a R[T0, . . . , Tn]-module, it is enough to
prove the same for N≥k. If k < m, then it follows from our calculations of cohomology
of O(−m), that N≥k = R[T0, . . . , Tn](−m)⊕r which is finite. If k ≥ m, then N≥k is a
submodule of N≥m−1, so it is also finite as an R[T0, . . . , Tn]-module. �

Now, we may deduce the general case.

Corollary 4.49. Let A be a graded ring such that A0 is Noetherian and A is generated
by finitely many elements of A1 over A0. Set X = Proj(A) and let F be a coherent sheaf
on X.

(1) There exists a surjection OX(−m)⊕r → F for d� 0 and some, m, r ≥ 0.
(2) For any i, the A0-module H i(X,F) is finite.
(3) If i > 0, then H i(X,F(d)) = 0 for all sufficiently large d� 0.
(4) For any k, the graded A-module

⊕
d≥kH

0(X,F(d)) is finite.

Proof. By assumption there exists a surjection of graded A0-algebras A0[T0, . . . , Tn]→ A
where deg(Tj) = 1 for j = 0, . . . , n. This induces a closed immersion i : X → PnA0

such
that i∗OPn

A0
(1) = OX(1). Now, the claims follow directly from Proposition 4.48 applied

to the coherent sheaf i∗F on PnA0
. For example, the surjection OPn

A0
(−m)⊕r → i∗F yields

by adjunction another surjectionOX(−m)⊕r → F . The statements on cohomology follow
from stability under finite pushforward. �

We had promised to relate finite graded A-modules to coherent sheaves on X. This is
related to tails of graded modules, i.e., the graded submodules of sufficiently large degree.

Corollary 4.50. Let A be a graded ring such that A0 is Noetherian and A is generated
by finitely many elements of A1 over A0. Let M be a finite graded A-module. Set
X = Proj(A) and let M be the associated quasi-coherent sheaf on X. Then, Mn →
Γ(X,M(n)) are isomorphisms for all sufficiently large n� 0.

Proof. Finiteness of A as an A-module implies that M is a coherent sheaf on X. Set
N =

⊕
n∈Z Γ(X,M(n)) and recall that we have an isomorphism N ' M. We have

to show that the natural map M → N of graded A-modules identifies their tails, i.e.,
it is an isomorphism in sufficiently large degrees. Let K = ker(M → N) and Q =
coker(M → N). Since one checks that the functor M 7→ M is exact by construction
itself (as localization and taking degree 0 parts are exact functors), we get vanishing of
K and Q. Also note that N≥k is a finite A-module by Corollary 4.49, so the same holds
for K≥k and Q≥k. We know already that modules with the same tails induce the same
quasi-coherent sheaves, so we are reduced to the following claim: let K be a finite graded
A-module with vanishing coherent sheaf K; then Kn = 0 for n� 0.

To prove tail vanishing, let x1, . . . , xr ∈ K be homogeneous generators sitting in
degrees d1, . . . , dr and f1, . . . , fn ∈ A1 be A0-linear generators. For each i and j there
exists an nij ≥ 0 such that fnij

i xj = 0 by vanishing of K. Then we see that Kd is zero
for d� 0 as every element of Kd is a sum of monomials in the fi times some xj of total
degree d. �
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An equivalent way of formulating the condition of vanishing tails, at least for finite
graded A-modules is to require that K is A>0-power torsion. We get a Serre full sub-
category GrModωA[A>0] ⊂ GrModωA of A>0-power torsion modules inside the category of
finite graded A-modules.
Proposition 4.51. Let A be a graded ring such that A0 is Noetherian and A is generated
by finitely many elements of A1 over A0. Set X = Proj(A). The functorM 7→ M induces
an equivalence

GrModωA/GrModωA[A>0]→ CohX , (4.25)
with quasi-inverse given by F 7→

⊕
n≥k Γ(X,F(n)) for any k.

Proof. Clearly, A>0-power torsion modules define trivial coherent sheaves, as seen in the
previous corollary. Also, we saw above that the quasi-inverse takes a coherent sheaf
M in the essential image to a graded module N with the same tail as M , so they are
isomorphic in the Serre quotient. As for essential surjectivity, we just invoke finiteness
of ⊕n≥kΓ(X,F(n)) and recall that its associated sheaf recovers F . �

We conclude this section by proving coherence is preserved under proper derived push-
forward.
Proposition 4.52. Let S be a locally Noetherian scheme, f : X → S be a proper
morphism, and F be a coherent OX-module. Then, Rif∗F is a coherent OS-module for
all i ≥ 0.
Proof. We may assume that S and X are noetherian and that S is affine. Notice that the
property of a coherent sheaf on X to have coherent higher direct images is stable under
kernels, cokernels, and extensions by the long exact sequence in cohomology. Notice
that any coherent sheaf is an extension of pushforward of ideal sheaves along closed
immersions. Indeed, first we may write any coherent sheaf F has an extension of coherent
sheaves i∗G pushed forward along a closed immersion i : Z → X with Z integral. Locally,
we may write i∗G|U ' i∗OZ |⊕rU so we can extend this to an injection i∗I⊕r → i∗G for
some ideal sheaf I ⊂ OZ , meaning we can filter F by coherent sheaves of the form i∗I,
with I being a generic line bundle on the integral Z. By the same inductive argument,
it becomes clear that for the sake of proving that coherence is preserved, we may replace
the ideal sheaves I by our favorite generic line bundle G on Z. Also we may assume that
X = Z is integral by the Leray spectral sequence and because i is affine.

Now we apply Chow’s lemma to f to get a projective birational map π : Z ′ → Z and
a closed immersion i → Z ′ → PnS of S-schemes. Let L = OZ(1) be the very ample line
bundle defined via the embedding i. It turns out that (π, i) embeds Z ′ into PnZ , in such a
way that OPn

Z
(1) pulls back to L. Hence, we deduce that Rif ′∗L⊗d and Riπ∗L⊗d vanish

for i > 0 and d � 0. Setting G = π∗L⊗d, we see that it is a generic line bundle as π
is birational. On the other hand, the Leray spectral sequence for the composition f ◦ π
applied to L⊗d degenerates at the second page, so we get that Rpf∗G = Rp(f ′)∗L⊗d
vanishes for p > 0 and is coherent for p = 0 as f ′ is projective. �

Corollary 4.53. Let S be the spectrum of a noetherian ring A, f : X → S be a proper
morphism, and F be a coherent OX-module. Then H i(X,F) is a finite A-module for all
i ≥ 0.
Proof. This is just the affine case of Proposition 4.52. �
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4.6. Base change. Let f : X → S be a morphism of schemes. Suppose further that
g : S′ → S is any morphism of schemes. Denote by X ′ = XS′ = S′×SX the base change
of X and f ′ : X ′ → S′ the base change of f . Also write g′ : X ′ → X the projection. We
will refer to this as a base change diagram and use this notation consistently.

Lemma 4.54. Let f : X → S be a morphism of schemes and F be a quasi-coherent
OX-module. If f is affine, then for every base change diagram we have an identification
g∗f∗F ' f ′∗(g′)∗F .

Proof. Note that there is always a canonical map by using adjuction twice. The statement
is local on S and S′. Hence we may reduce to the situation where there are ring maps
R → A,R′ and an A-module M . The isomorphism boils down to the equality (R′ ⊗R
A)⊗AM = R′ ⊗RM of R′-modules. �

The most important case of base change is when g is flat.

Lemma 4.55 (Flat base change). Consider the base change diagram for (f, g) : X ×S
S′ → S and let F be a quasi-coherent OX-module. If g is flat and f is qcqs, then for any
i ≥ 0 we get an isomorphism

g∗Rif∗F ' Rif ′∗(g′)∗F , (4.26)

In particular, if g is a morphism of affine schemes induced by A→ A′, then H i(X,F)⊗A
A′ = H i(X ′,F ⊗A A′).

Proof. To get a natural map, one has to use the adjunction pair (g∗, g∗) and then either
work with injective resolutions (preserved under flat pushforward!) or use the edge maps
of the Leray spectral sequence g∗Rif ′∗ → Ri(g ◦ f ′)∗ = Ri(f ◦ g′) → Rif∗(g

′)∗. Since
the isomorphism claim is local, we may assume that g is induced by a flat map of rings
A → A′ upon taking spectra. Now, Rif∗F is the quasi-coherent sheaf attached to the
A-module H0(S,Rif∗F) = H i(X,F), and similarly, Rif ′∗(g′)∗F is the quasi-coherent
OS′-module associated to the A′-module H i(X ′,F ⊗A A′).

We want to show that H i(X,F) ⊗A A′ −→ H i(X ′,F ⊗A A′) is an isomorphism and
we are for simplicity going to assume X separated. Choose a finite affine open covering
U of X and recall that Ȟp(U ,F) = Hp(X,F) by Čech comparison in Proposition 4.33.
By the same token, we get Ȟp(U ′,F ⊗A A′) = Hp(X ′,F ⊗A A′). But it is obvious by
construction (and the fact that every intersection Ui0...ip is affine) that Čech complexes
commute with base change and now we use that flat tensoring is exact and thus preserves
cohomology. �

Next, we would like to read Rif∗F out of a concrete complex of quasi-coherent sheaves.
Under separatedness assumptions, we do this via a relative Čech construction.

Lemma 4.56. Let f : X → S be a morphism of separated schemes, and F be a quasi-
coherent OX-module. For any finite affine open covering U of X, the Čech sheaf complex

Čp(U , f,F) =
⊕

i0...ip
fi0...ip∗f

∗
i0...ipF (4.27)

with the obvious differentials has cohomology sheaves functorially isomorphic to Rif∗F .

Proof. We omit the proof for now as it is extremely similar to the work we did when
computing cohomology via the Čech complex. �
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Next, we apply this to base change.

Lemma 4.57. Consider a base change diagram (f, g) : X×SS′ → S of separated schemes,
and let F be a quasi-coherent sheaf on X. Choose a finite affine open covering U : X =⋃
Ui of X. Then, the cohomology of g∗Č•(U , f,F) recovers Rif ′∗F ′.

Proof. We let U ′ := (g′)∗U regardless of whether g is affine or not. Then, we get
an equality of Čech complexes g∗Č•(U , f,F) = Č•(U ′, f ′,F ′). Moreover, exactly as in
Lemma 4.56, one see that the right complex still computes Rif ′∗F ′ upon taking cohomol-
ogy because U ′i → X ′ and U ′i → S′ are still affine maps. �

We warn that this statement does not simply upgrade to the derived category, as we
are using the underived pullback g∗, instead of its left derived functors Lig∗. When f is
proper, we can do more than the above, namely prove that the cohomology complex is
perfect in grown-up language.

Lemma 4.58. Let A be a Noetherian ring with spectrum S, f : X → S be a proper
morphism of schemes, and F be an S-flat coherent sheaf on X. Then there exists a finite
complex of finite projective A-modules M• such that H i(XA′ ,FA′) = H i(M• ⊗A A′)
functorially in A′.

Proof. Choose a finite affine open covering X =
⋃
i=1,...,n Ui. By Lemmas 4.56 and 4.57,

the alternating Čech complex K• := Č•alt(U ,F) satisfies computes cohomology H i(X,F)
after arbitrary base change A → A′. Since F is flat over A, we see that each Kn

alt is
flat over A, but almost never finite over A. However, K• is bounded and its cohomology
groups are finite over A by Corollary 4.53. Using projective resolutions, we can replace
K• by a bounded complex M• of finite A-modules such that Mn is projective if n > 0,
and which still computes the cohomology of F after any base change. Now, we observe
that the mapping cone C• of the map M• → K• is exact and its terms are direct sums
Mn+1 ⊕Kn, so we deduce that M0 must also be flat by using Tor vanishing. �

Let us now define the Euler characteristic of a coherent sheaf on a proper k-scheme X
for any field k.

Definition 4.59. Let k be a field, X a proper k-scheme, and F a coherent sheaf on X.
Then, its Euler characteristic

χ(X,F) =
∑
i≥0

(−1)idimkH
i(X,F) (4.28)

is the alternating sum of the dimensions of its cohomology groups.

This is well-defined because the H i(X,F) are finite k-modules and vanish for all i� 0.
Now, we can prove that Euler characteristic remains locally constant in families, assuming
flatness.

Theorem 4.60. Let S be locally Noetherian, X → S be a proper map and F be an S-flat
coherent sheaf on X. Then the Euler function |S| → Z given by s 7→ χ(Xs,Fs) is locally
constant.

Proof. We have an equality χ(Xs,Fs) =
∑

(−1)idimsM
i
s by the previous lemma and the

long exact sequence of cohomology applied inductively to the complex M•. It is trivial
to see that s 7→ dimsM

i
s is locally constant, as M i

s is finite projective over A. �
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Let us recall that a function f : |S| → R is upper semi-continuous if the strict sublevel
sets f−1(R<r) are open in |S| for all real numbers r. This means that that the function
can only jump up when passing to closeds of |S|. The dual notion of upper semi-continuity
is called lower semi-continuity.

Theorem 4.61. Let S be locally Noetherian, X → S be a proper map and F be an S-flat
coherent sheaf on X. Then the function |S| → Z given by s 7→ dimkH

i(Xs,Fs) is upper
semi-continuous.

Proof. Let Bi
A′ ⊂ ZiA′ ⊂ M i ⊗A A′ be the cycles and boundaries of the complex in the

key lemma after base change. This implies that

dimkH
i(Xs,Fs) = dimkM

i
s − dimkB

i
s − dimkB

i+1
s (4.29)

and this reduces us to prove lower semi-continuity of s 7→ dimkB
i
s. But bounding the

fiber rank of the mapM i−1 →M i by some d corresponds to demand vanishing of certain
local minors of the corresponding matrix, defining a closed of S. �

The next result that we are going to prove is Grauert’s theorem.

Theorem 4.62. Let S be a locally noetherian reduced scheme, X → S be a proper
map and F be an S-flat coherent sheaf on X. If the function |S| → Z given by s 7→
dimkH

i(Xs,Fs) is locally constant, then Rif∗F is locally free with S-fibers equal to
H i(Xs,Fs).

Proof. We may and do assume that S is the spectrum of a noetherian ring A, in order
to apply our key lemma. We have that the fiber dimensions of Bi

s and Bi+1
s are locally

constant by the formula in the previous theorem. This implies thatW i := coker(M i−1 →
M i) andW i+1 := coker(M i →M i+1) have locally constant ranks. Because A is reduced,
this implies these cokernels are locally free. Indeed, we get a surjection A⊕n → N with
same local ranks by Nakayama’s lemma after possibly inverting an element of A. If
some vector (ai) is in the kernel with a1 6= 0 up to reordering, then there exists some p
not containing a1 (as A is reduced and the nilradical is the intersection of all primes),
and hence Np has smaller rank. Now, we can see that Bi+1 and thus also H i are finite
projective A-modules and therefore satisfy base change. �

Finally, we have the following strong predictor for the behavior of fibers of cohomology,
usually called cohomology and base change.

Theorem 4.63. Let S be a locally noetherian scheme, X → S be a proper map and F
be an S-flat coherent sheaf on X. If Rif∗F → H i(Xs,Fs) is surjective for all s, then
the base change map g∗Rif∗F → Rf ′∗F ′ is an isomorphism for any map g : S′ → S.
Moreover, Ri−1f∗F → H i−1(Xs,Fs) is also surjective if and only if Rif∗F is locally free
over S.

Proof. We are going to assume that S is the spectrum of a noetherian ring A. Recall that
we have defined the R-modules Bi

R ⊂ ZiR ⊂ M i
R and H i

R := ZiR/B
i
R ⊂ W i

R := M i
R/B

i
R

after base changing, and the theorem relates to understanding when these are compatible
with base change. If H i → H i

s is surjective, then also Zi → Zis is surjective by the snake
lemma and the automatic surjectivity of Bi → Bi

s. The snake lemma again tells us that
Bi+1 satisfies base change at every s. But this implies Tor1(κ(s),W i+1) vanishe taking
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the corresponding long exact sequence. The local criterion for flatness implies that W i+1

is flat, so the same holds for Bi+1 and Zi. It now follows easily that H i satisfies base
change for every A-algebra R. If H i−1 → H i−1

s is surjective, then we see that W i is also
finite projective, and thus so is H i. Conversely, if H i is finite projective, then Bi is also
finite projective and hence satisfies base change at all s. Using the snake lemma once
more, we get that Zi−1 → Zi−1

s is surjective, and thus so is H i−1 → H i−1
s . �

5. Descent

5.1. Sites. Unfortunately, the Zariski topology is not a very fine structure in algebraic
geometry, because there are just not that many open subschemes. Grothendieck’s fun-
damental idea was that the notion of topology does not necessarily require us to think
in terms of open subsets, but rather that we can think of the maps U → X to be them-
selves open, but necessarily monomorphisms. This insight led in a short amount time
to the discovery of étale cohomology and progress on the Weil conjectures, as well as a
foundation for rigid-analytic geometry. Armed with this, we will have a clear geometric
picture of what it means to glue objects in algebraic geometry along flat covers, instead
of just open ones.

Definition 5.1. A site is given by a category C and a set Cov(C) of families of morphisms
{Ui → U}i∈I for some set I, called coverings of C, and satisfying the following axioms

(1) If V → U is an isomorphism then {V → U} ∈ Cov(C).
(2) If {Ui → U}i∈I ∈ Cov(C) and for each i we have {Vij → Ui}j∈Ji ∈ Cov(C), then
{Vij → U}i∈I,j∈Ji ∈ Cov(C).

(3) If {Ui → U}i∈I ∈ Cov(C) and V → U is a morphism of C then Ui×U V exists for
all i and {Ui ×U V → V }i∈I ∈ Cov(C).

Usually, we consider appropriate subcategories of schemes, which are stable under fiber
products and disjoint unions. It will often happen (except in the Zariski topology) that
a (possibly even infinite) cover {Ui → U} gives rise to a singleton cover V → U with
V := ti∈IUi, allowing us to focus most of our energy on the latter case.

Remark 5.2. If one wants to define the site of all schemes with, e.g., the Zariski topology,
one quickly runs into set-theoretic difficulties. To resolve this, one should either assume
the existence of universes and work inside them throughout, or fix a strong limit cardinal
κ and define every category in such a way that its objects and morphisms have cardinality
bounded by κ. We will not occupy ourselves with these cumbersome technicalities and
will simply ignore the previous issues.

Example 5.3. Let X be a scheme and define XZar as the category of open immersions
U → X with the obvious morphisms. We declare {Ui → U}i∈I ∈ Cov(XZar) to be a
cover if

⋃
Ui = U . This is clearly a site and the our general definition of sheaves on

arbitrary sites applied to XZar shall agree with the usual notion.

Example 5.4. Let G be a group. Consider the category G-Sets whose objects are sets
X with a left G-action, and morphisms are G-equivariant. This category admits fiber
products and we declare {ϕi : Ui → U}i∈I to be a cover if

⋃
i∈I ϕi(Ui) = U . One

can readily check that this defines a site. For the advanced readers, we note that this
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site is related to an algebraic one via the theory of stacks, namely one can consider the
classifying stack of G-torsors, denoted either BG or [∗/G].

Next, we can define the notion of sheaves on arbitrary sites.

Definition 5.5. Let C be a site, and let F be a presheaf of sets on C. We say F is a
sheaf if for every cover {Ui → U}i∈I ∈ Cov(C) the diagram

F(U)
∏
i∈I F(Ui)

∏
(i0,i1)∈I×I F(Ui0 ×U Ui1) (5.1)

is an equalizer. The category Sh(C) of sheaves is the full subcategory of Fun(Cop,Sets)
whose objects are sheaves.

This is very similar to the usual definition, except we are not allowed to take intersec-
tions anymore (as cover maps are not monomorphisms), but instead take fiber products.
More generally, given another category A, one can define the notion of A-valued sheaves
on C, but we do not pursue this.

To define sheafification in the site framework, we need Čech cohomology. Let F be
a presheaf on C, and U = {Ui → U}i∈I be a covering of C. We use the notation F(U)
to indicate the equalizer of the two pullback maps as in the previous equation – this is
the 0-th Čech cohomology group H0(U ,F). There is a canonical map F(U) → F(U)
compatibly with the pullback maps F(U) → F(V) along maps of covers V → U . A
sufficient and necessary condition for F to be a sheaf is that this natural map is an
isomorphism for all covers U .

Lemma 5.6. The assignment F+ via the rule U 7→ F+(U) := Ȟ0(U,F) := limUH
0(U ,F)

with the limit running through all covers U of U defines a natural presheaf equipped with
a canonical map of presheaves F → F+.

Proof. This group is the zeroth Čech cohomology of F over U . The transition maps
F+(U) → F+(V ) are defined thanks to the stability under pullbacks imposed on the
site C. Their associativity is checked via stability under composition and it is routine to
check that this is compatible with the obvious map F → F+ whose values on U is the
limit of F(U)→ F(U). �

More precisely, the above construction F 7→ F+ is an endofunctor of Fun(Cop,Set)
(and the canonical map from F is also functorial). Because two covers can be simultane-
ously refined, the limit in U is cofiltered and hence every element of F+(U) arises from
H0(U ,F) for some cover U of U , and two elements agree if they do already on H0(V,F)
for some refinement V → U .

Definition 5.7. We say that a presheaf F on a site C is separated if, for all covers
{Ui → U}, the map F(U)→

∏
F(Ui) is injective.

Now, we can fully describe the sheafification functor.

Theorem 5.8. The following properties hold:
(1) The presheaf F+ is separated.
(2) If F is separated, then F+ is a sheaf and F → F+ is injective.

In particular, F++ is always a sheaf.
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Proof. The first part was explained already. Indeed if two elements of F+(U) coincide on
a cover U , we may after some refinement realize them as the same elements in H0(V,F),
hence by definition also in F+(U).

As for the second part, injectivity is clear. Now, let U be a cover and suppose s lies in
the equalizer H0(U ,F+). After choosing a refinement V → U , we can use the injectivity
to upgrade s to an element of H0(V,F), so it comes from F+(U) as desired. �

Definition 5.9. Let C be a site and let F be a presheaf on C. The sheaf F# := F++

together with the canonical map F → F# is called the sheaf associated to F .

The assignment above is functorial and we call it the sheafification functor. It is easy
to see that F → F# is the initial map of presheaves towards a sheaf. In other words,
sheafification is left adjoint to the inclusion functor Sh(C)→ Fun(C,Set). It is a general
fact that sheafification is an exact functor (right exactness follows from left adjointness,
and the rest from commuting with finite limits, because covers are cofiltered). Just as
for sheaves on topological spaces, we get the usual notion of injectivity (can be checked
at the level of presheaves) and surjectivity (existence of lift up to refining covers).

Remark 5.10. There is a general definition of morphisms of sites and of topoi (i.e.,
categories of sheaves on sites) that we will avoid in these notes. Knowing these tools is
useful for transitioning from one topology to another.

5.2. Abstract descent data. In this subsection, we are going to introduce the main
definitions surrounding faithfully flat descent of quasi-coherent sheaves. The basic idea
are that we consider quasi-coherent sheaves Fi on the terms of an fppf cover Si → S that
are compatible with each other in a precise sense, and then we attempt to realize all of
them as arising from a quasi-coherent sheaf F on S, called the descent of the Fi.

We are going to constantly use the following notation. If we have two S-schemes X0

and X1, then we write pi : X0 ×S X1 → Xi with i = 0, 1 for the canonical projections.
Similarly, if we are given a further S-scheme X2 we let pij : X0×SX1×SX2 → Xi×SXj

with 0 ≤ i < j ≤ 2 denote the obvious projection. At this point, you should understand
how to continue these conventions, should the need ever arise (hopefully not).

Definition 5.11. Let S be a scheme and {fi : Si → S}i∈I be an fpqc cover.
(1) A descent datum (Fi, ϕij) for quasi-coherent sheaves with respect to the given

family is given by a quasi-coherent sheaf Fi on Si for each i ∈ I, an isomorphism
of quasi-coherent OSi×SSj -modules ϕij : p∗0Fi → p∗1Fj for each pair (i, j) such
that for every triple of indices (i, j, k), we get a commutative diagram

p∗0Fi p∗2Fk

p∗1Fj
p∗01ϕij

p∗02ϕik

p∗12ϕjk

(5.2)

of OSi×SSj×SSk
-modules, called the cocycle condition.

(2) A morphism ψ : (Fi, ϕij) → (F ′i , ϕ′ij) of descent data is given by a family ψ =

(ψi)i∈I of morphisms of OSi-modules ψi : Fi → F ′i such that all the diagrams
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p∗0Fi p∗1Fj

p∗0F ′i p∗1F ′j

ϕij

p∗0ψi p∗1ψj

ϕ′ij

(5.3)

commute.

Example 5.12. Let S =
⋃
Si be an open cover. Then, the category of glueing data of

quasi-coherent sheaves with respect to this open cover is equivalent to QCohS .

For a quasi-coherent sheaf F on S and an fpqc cover {fi : Si → S}i∈I , we denote simply
by (f∗i F , can) the descent datum with the obvious transition maps given by composability
of pullbacks.

Definition 5.13. Let S be a scheme and {fi : Si → S}i∈I be an fpqc cover. A descent
datum (Fi, ϕij) for quasi-coherent sheaves with respect to the given covering is said to
be effective if there exists a quasi-coherent sheaf F on S such that (Fi, ϕij) is isomorphic
to (f∗i F , can).

We have already seen that descent data for open covers are always effective. Our goal
is to prove instances of fpqc descent. This requires certain assumptions, and as always
we need to start by the simplest case, i.e., that of affine fpqc covers f : X := Spec(B)→
S := Spec(A).

Let A→ B be a flat homomorphism of rings. This gives rise to a cosimplicial A-algebra

B B ⊗A B B ⊗A B ⊗A B (5.4)

continuing indefinitely to the right. More precisely, (B/A)• is defined so that (B/A)n is
the (n+1)-fold tensor product of B over A, and given a non-decreasing map ϕ : [n]→ [m]
the A-algebra map (B/A)•(ϕ) is the map

a0 ⊗ . . .⊗ an 7−→
∏

ϕ(i)=0
ai ⊗

∏
ϕ(i)=1

ai ⊗ . . .⊗
∏

ϕ(i)=m
ai (5.5)

where we use the convention that the empty product is 1. (Exercise: write down all the
first 8 face and degeneracy maps displayed in the diagram above.) An A-moduleM gives
rise to a cosimplicial (B/A)•-module (B/A)• ⊗R M by tensoring on the right. In this
setting, we have an analogue of a descent datum for quasi-coherent sheaves.

Definition 5.14. Let A→ B be a faithfully flat ring homomorphism.
(1) A descent datum (N,ϕ) for modules with respect to A → B is given by a B-

module N and an isomorphism of B ⊗A B-modules ϕ : N ⊗A B → B ⊗A N such
that the cocycle condition holds, i.e., we get a commutative diagram

N ⊗A B ⊗A B B ⊗A B ⊗A N

B ⊗A N ⊗A B

ϕ02

ϕ01 ϕ12
(5.6)
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of B ⊗A B ⊗A B-modules, where the maps ϕij are given by scalar extending ϕ
along the obvious cosimplicial face maps of (B/A)•.

(2) A morphism (N,ϕ) → (N ′, ϕ′) of descent data is a morphism of A-modules
ψ : N → N ′ such that the diagram

N ⊗A B B ⊗A N

N ′ ⊗A B B ⊗A N ′

ϕ

ψ⊗idB idB⊗ψ
ϕ′

(5.7)

is commutative.

It is not too hard to see using the cocycle condition that the descent datum (N,ϕ)
induces a natural cosimplicial (B/A)•-module N•, taking [n] to the n-fold tensor product
of B over A tensored with N on the right. Given an A-module M , we can apply this
construction to the canonical descent datum (M⊗AB, can), and we recover (B/A)•⊗AM .
Recall that our goal is to study effectivity of (N,ϕ), i.e., that it arises from someA-module
M . For this, we consider the complex s(N,ϕ) below

N → B ⊗A N → B ⊗A B ⊗A N → . . . (5.8)

obtained by taking the alternating sum of the face maps of N•. (Exercise: write down
the first two maps.) If (N,ϕ) = (M ⊗A B, can), we see that the kernel of the first map
carries a map from M , so s(M ⊗A B, can) extends to a complex

s̃(M) := [0→M → s(M ⊗A B, can)]. (5.9)

The next observation is crucial for descent.

Lemma 5.15. The complex s̃(M) is exact.

Proof. The assertion is clear stable under tensoring with faithfully flat covers A → A′.
Taking A′ = B itself, we see that the new faithfully flat homomorphism B → B ⊗A B
appearing in the descent admits a section B ⊗A B → B induced by multiplication. In
other words, it suffices to treat the case where A → B admits a section. Under this
assumption, one can explicitly verify that A → (B/A)• is a homotopy equivalence of
cosimplicial R-algebras. Passing to complexes, we get the desired exactness. �

In particular, we deduce that (N,ϕ) is effective if and only if the obvious B ⊗A
H0(s(N,ϕ)) → N is an isomorphism. Notice that we can verify this after a faithfully
flat cover A→ A′, and hence assume A→ B has a section.

Proposition 5.16. Every descent datum (N,ϕ) is effective.

Proof. As explained before, we assume that A → B has a section σ : B → A. Set
M := H0(s(N,ϕ)): we have to show that B ⊗A M → N is an isomorphism. Take an
element n ∈ N . Write ϕ(n⊗1) =

∑
bi⊗xi for certain bi ∈ B and xi ∈ N , so in particular

n =
∑
bixi. Next, write ϕ(xi⊗1) =

∑
bij⊗yj for certain bij ∈ B and yj ∈ N . Applying

σ to the cocycle condition, we deduce on the one hand∑
σ(bi)ϕ(xi ⊗ 1) =

∑
σ(bi)⊗ xi (5.10)
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and on the other hand ∑
i

bi ⊗
∑
j

σ(bij)yj =
∑

bi ⊗ xi. (5.11)

In particular, the first equation tells us
∑
σ(bi)xi ∈ M , and by symmetry so does∑

σ(bij ⊗ yj). Now, the second equation implies
∑

i bi(
∑

j σ(bij)yj) =
∑
bixi = n, and

thus B ⊗AM → N is surjective. Injectivity is clear by faithful flatness of A→ B. �

Remark 5.17. Assume B =
∏
iA[f−1

i ] for finitely many fi ∈ A. Then (B/A)n =∏
i0,...,in

A[f−1
i0

. . . f−1
in

] and our previous theorem not only recovers the fact that sheafifi-
cation is unnecessary for the structure presheaf, but also that quasi-coherent sheaves on
affines have vanishing Čech cohomology.

Now, we can return to general schemes and prove fpqc descent for quasi-coherent
sheaves.

Proposition 5.18. Let S be a scheme and f : X → S be an fpqc cover. Any descent
datum on quasi-coherent sheaves for X is effective and the functor QCohS → DescX/S
is an equivalence.

Proof. First, we show that the functor is faithful. Let F , G be quasi-coherent sheaves
on S and let a, b : F → G be homomorphisms of OS-modules. If f∗(a) = f∗(b), then we
can apply faithful flatness of OS,s → OX,x with s = f(x) to the kernel of a− b to deduce
that as = bs : Fs → Gs. Hence a = b.

Before continuing, we note that, by definition of the fpqc site, there exists a fpqc cover
g : Y → X such that h := g◦f factors as an fpqc affine cover and an open cover. Now, we
prove fully faithfulness. Let F , G be quasi-coherent sheaves on S and let c : f∗F → f∗G
be a homomorphisms of OX -modules such that p∗0c = p∗1c on X ×S X. First, we see that
g∗c equals h∗a for some a : F → G by fpqc descent in the affine case (and open covers as
well, which is trivial by the sheaf property). Now we invoke faithfulness to get c = f∗a,
proving fullness.

Finally, we treat essential surjectivity. Let (G, ϕ) be a descent datum for quasi-coherent
sheaves relative to f . We know from fpqc affine descent that (g∗G, g∗ϕ) on Y assumes the
form (h∗F , can) for some quasi-coherent sheaf F on S. Using full faithfulness, we deduce
that the isomorphism above descends to an identification (G, ϕ) = (f∗F , can). �

Remark 5.19. Let us consider the case of Galois descent. Finite field extensions l/k
induce faithfully flat ring maps. Assume l/k is Galois, so that we have

l ⊗k l =
∏

σ∈Gal(l/k)

l (5.12)

via a ⊗ b 7→ (aσ(b)), and similarly for the remaining terms of the cosimplicial algebra
(l/k)•. Given a k-scheme X, we see that descent data of quasi-coherent sheaves along
Xl := X⊗k l→ X amounts to a quasi-coherent sheaf F onXl together with isomorphisms
ϕσ : F → σ∗F giving rise to a 1-cocycle Gal(l/k) → Aut(F). Now, we know they are
effective.
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5.3. Descent of properties. In this section, we pursue the idea that many absolute or
relative properties of schemes that we have encountered so far can be really seen locally
in some of our favorite topologies: étale smooth, fppf, or fpqc.

Definition 5.20. Let P be a property of morphisms of schemes. We say that P is τ -local
on the source if it respects disjoint unions and Y → X has P if and only if Z → X has
P for any τ -cover Z → Y .

Lemma 5.21. Let P be one of the following properties: locally of finite presentation,
flat, smooth, étale. Then P is fppf local on the source.

Proof. Finite presentation is relatively easy (especially under noetherian assumptions),
so we leave it as an exercise. Flatness reduces to an assertion about homomorphisms of
rings A → B → C. If M → N is an injection such that B ⊗A M → B ⊗A N has non-
trivial kernel K, then C⊗BK ⊂ C⊗AM by faithful flatness, while C⊗AM → C⊗AN is
injective by flatness. In the smooth/étale case, we already know that X → Y is fppf, so
we only need to pass to geometric fibers to verify smoothness and or étaleness. The étale
case is simple, because X is now a disjoint union of points over an algebraically closed
field, and X → Y is faithfully flat, so for dimension reasons it is discrete of dimension 0,
and moreover reduced as OY,y → OX,x with y = f(x) is injective.

The smooth case is more difficult, because we need to check that regularity of local
rings can be verified after a fppf cover. This is a consequence of a hard theorem of
Serre in commutative algebra characterizing regular rings as the only ones whose global
dimension is finite. Here, having finite global dimension is a homological notion stable
under faithfully flat base change. �

Definition 5.22. Let P be a property of schemes. We say that P is τ -local if it respects
disjoint unions and X has P if and only if Y does for any τ -cover Y → X.

Proposition 5.23. Let P be one of the following properties: reduced, normal, regular.
Then P is local in the smooth topology.

Proof. Let us first handle the regular case. A smooth R-algebra S is étale over some
polynomial R-algebra, so ascendability reduces to the étale situation. But étale maps
preserve tangent space dimensions, so this is clear. Descendability was checked in the
lemma above. Next, we use Serre’s criterion for reducedness and normality, namely that
a ring is reduced (resp. normal) if and only if it is R0 and S1 (resp. R1 and S2). The Rk
type conditions prescribe regularity in points of dimension ≤ k, whereas the Sk condition
is related to the homological notion of depth which we do not recall here. In any case,
we have checked that Rk ascends and descends along smooth maps, and the same can
be done for Sk, so this yields the proposition. �

The most frequently used kind of local property is the one below involving base change,
because it applies to a very wide range of situations.

Definition 5.24. Let P be a property of morphisms of schemes. We say P is τ -local on
the target if it respects disjoint unions and if X → Y has P if and only if X ×Y Z → Z
has P for any τ -cover Z → Y .
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Theorem 5.25. Let P be one of the following properties: qcqs, finitely presented, sepa-
rated, proper, flat, open immersion, closed immersion, affine, smooth, étale. Then, P is
fpqc local on the target.

Proof. Base change clearly preserves quasi-compactness. Let S′ → S be a fpqc cover
of affine schemes, and let f : X → S be a morphism. If f ′ : X ′ := X ×S S′ → S′ is
quasi-compact, then so is X ′ and thus also X by surjectivity of the projection X ′ → X.
The quasi-separated case follows from the quasi-compact one by considering the diagonal
∆f : X → X ×S X.

For simplicity, we will only prove locality for finite type, which is enough in the noe-
therian case. Being of finite type is preserved under base change, so let S′ → S be a fpqc
cover of affines, and let f : X → S be a morphism. By our proof for quasi-compactness,
we may assume that X is affine. Then, we are reduced to the situation of a ring map
A → B which becomes of finite type A′ → B′ after tensoring with a faithfully flat map
A → A′. Perhaps after some enlargement, there is an A-algebra map C → B from a
finite type polynomial A-algebra C whose tensor product C ′ → B′ with A′ is surjective.
Hence, C → B is also surjective by faithful flatness.

Base change preserves separatedness, so consider a fpqc cover S′ → S of affines, and
let f : X → S be a morphism with separated base change f ′ : X ′ → S′ is separated. This
means that ∆′ : X ′ → X ′ ×S′ X ′ is a closed immersion, and since ∆ is an immersion in
general, it suffices to show descent for universally closedness to get separatedness. This
will prove descent for properness as well. So now we assume instead that f : X → S is
a map with closed base change f ′ : X ′ → S′. The fpqc cover X ′ → X is a quotient map
on underlying topological spaces, so a diagram chase now reveals that f is also closed.

Now, we treat flatness. This property is stable under base change, so we consider a
fpqc cover S′ → S of affines. Let f : X → S be a morphism with flat base change
f ′ : X ′ → S′. We can reduced to the case where f is affine, and then the claim follows
as for the fppf locality of flatness on the source.

Base change also preserves affineness, so let g : S′ → S be an fpqc cover of affines
and f : X → S be a morphism with affine base change f ′ : X ′ → S′. Our previous
efforts tell us that f is a separated qcqs map. We can thus form the quasi-coherent sheaf
f∗OX on S, whose relative spectrum defines the affine hull of f . Note that we have
flat base change, i.e., g∗f∗OX = f ′∗OX′ , so the affine hull is fpqc local on the target.
Therefore, we can replace S by the affine hull of X, thereby reducing to the case where
f ′ is an isomorphism and need to descend this. The same argument as for universally
closed maps shows that f is a universal homeomorphism. Let x ∈ U ⊂ X be an affine
open neighborhood and use the homeomorphism to find a global section f of S such
that x ∈ X[f−1] ⊂ U , where the notation indicates the open subscheme defined by the
non-vanishing of f . Then, X[f−1] = U [f−1] is necessarily affine and we can repeat this
procedure around any point to show that f is actually an affine map. But as S was the
affine hull already, we get that f is an isomorphism.

Let S′ → S be an fpqc cover of affines, and let f : X → S be a morphism whose base
change f ′ : X ′ → S′ is an open immersion. We must show that f is an open immersion
as well. As above, we can at least deduce that f is universally open and injective (look
at geometric fibers). This means f(|X|) ⊂ S is an open subset. Covering it by affine
opens U ⊂ S, we reduce the problem to the case where f ′ is an isomorphism. We have
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seen above that f is at least affine, and looking at the corresponding global sections, one
easily sees that also f must be an isomorphism.

Let S′ → S be a fpqc cover of affines and f : X → S be a map whose base change
f ′ : X ′ → S′ is a closed immersion. Then, we know already that f must be affine, and
this implies that the homomorphism on global sections is surjective as this can be checked
after tensoring with a faithfully flat algebra.

As for smoothness and étaleness, we have already shown how to descend (locally) of
finite presentation, and flatness. Therefore we are reduced to descending smooth and
étale geometric fibers, which is obvious (because we are discussing geometric properties,
that do not alter under change of algebraically closed field). �

Remark 5.26. There are important properties in algebraic geometry that are very sen-
sitive to base change. Namely, being projective (or even quasi-projective) is not Zariski
local.

Remark 5.27. It would also be interesting to discuss fppf descent of schemes themselves.
The affine case reduces to fpqc descent of quasi-coherent sheaves via their relative spectra.
In the non-affine case, it is not possible in general to descend schemes in the fppf topology,
and one needs extra data, e.g., line bundles on projective schemes, etc.

6. Divisors and curves

We have already considered the category of quasi-coherent sheaves on a scheme X.
A decisive example among these are invertible sheaves, i.e., those that are locally free
of rank 1. They form the Picard group Pic(X) and one can probe them in terms of
1-codimensional cycles in X. We will define these alternative notions of Cartier and Weil
divisors. We will also prove the Riemann–Roch formula for proper smooth curves over a
field.

6.1. Meromorphic functions. Let A be a ring. We define its ring of fractions Frac(A)
as the localization of A at the multiplicative subset consisting of non-zero divisors of A.

Definition 6.1. Let X be a locally noetherian scheme. We denote by KX the sheafi-
fication of the assignment U 7→ Frac(OX(U)). This is called the sheaf of meromorphic
functions on X.

Before continuing, we should recall the notion of an associated point of a scheme.

Definition 6.2. Let X be a locally noetherian scheme. We say that x ∈ X is an
associated point if the maximal ideal of OX,x is an associated ideal. If x is an associated
but non-generic point, we call it an embedded point.

The notion of associated point on affine schemes corresponds exactly to the associated
prime ideals. The collection of associated points is finite locally on X.

Example 6.3. If X is locally Noetherian and reduced, then X has no embedded points.
Instead, let k be any field andX be the affine scheme given as the spectrum of k[u, v]/(u2, uv).
We claim that the origin (i.e. the vanishing locus of the ideal generated by u and v) is
an embedded point of X. Indeed, this maximal ideal equals the annihilator of u, so it is
an associated prime ideal, and it is clearly not a minimal prime ideal.
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If X has no embedded points, then KX is a quasi-coherent sheaf given as the direct
sum of the pushforwards of the local rings of the generic points of X.

Definition 6.4. A Cartier divisor D is a global section of K∗X/O∗X . We say that D ≥ 0
is effective if it lies in the subsheaf K∗X ∩ OX/O∗X . Finally, D = div(f) is a principal
divisor if it is the image of a meromorphic function f , i.e., a global section of K∗X .

A Cartier divisor can be described as (Ui, fi) for an open cover U ofX and meromorphic
functions fi ∈ KX(Ui)

∗ such that fif−1
j are units in OX(Uij). Being principal means

U can be taken to be the trivial cover, and effective means the fi ∈ OX(Ui) are actual
functions of our scheme. The group Div(X) of Cartier divisors has a natural group
structure inherited from the ambient sheaf and we define the class group CaCl(X) as the
quotient of Div(X) by its principal divisors.

Next, we are going to associate line bundles to arbitrary Cartier divisors. It is helpful
to give a cohomological description of Pic(X) first.

Lemma 6.5. Assume X has embedded points. There is an isomorphism Ȟ1(X,O∗X) '
Pic(X), canonical up to sign.

Proof. Let L be a line bundle on X. We can find an open cover U of X with trivializing
sections si : OUi ' LUi . Then, we obtain a unit element fij ∈ OX(Uij)

∗ by taking the
image of 1 under the automorphism s−1

i |Uij ◦ sj |Uij of OUij . To see that this defines a
1-cocycle of O∗X , we notice that fijfjk = fik by construction. It is easy to check that the
associated cohomology class of the 1-cocycle does not depend on the choice of an open
cover and trivializing sections. Conversely, if we are given a cocycle of O∗X , then after
possibly changing the open cover, we may assume that some Ui is dense in X, and define
L|Uj := fijOUj . �

Corollary 6.6. Assume X has no embedded points. Then, there is a natural isomorphism
CaCl(X)→ Pic(X) up to sign.

Proof. The long exact sequence of Čech cohomology applied to the short exact sequence
of abelian sheaves

1→ O∗X → K∗X → K∗X/O∗X → 1 (6.1)

yields an injection
CaCl(X)→ Pic(X) (6.2)

whose kernel embeds into Ȟ1(X,K∗X). But this sheaf is flasque, i.e., it induces surjections
upon restrictions along opens, so it has no higher cohomology. �

We wish to explicitly compute the sheaf OX(D) associated to the divisor D. If we
represent it by (Ui, fi), then the connecting homomorphism takes it to the units fif−1

j

on Uij . If we let L be the line bundle sitting inside K∗X as f−1
i OUi , then we see that

the 1-cocycle of O∗X determined by L via our isomorphism above is equal to fif−1
j on

Uij . The reason we set up this sign convention was so that invertible ideal sheaves are
anti-effective rather than effective, because it is the inverses of ideal sheaves that are
usually semi-ample, so this matches our positivity intuitions.
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Example 6.7. Let X = PnR and consider the line bundle OX(d) for any integer d. We
claim that this is associated to the divisor Dd which is locally given by the meromorphic
function T d0 T

−d
i on D+(Ti). This makes sense at least because if d ≥ 0, then this

function is regular, so the divisor Dd is effective. The corresponding transition function
on D+(TiTj) equals T dj T

−d
i , exactly the ones induced by OX(d) via our isomorphism

Ȟ1(X,O∗X) ' Pic(X). Note that there is nothing special about T0 in this situation, and
we can replace it by T1 or any other Tk for that matter. The Cartier divisors are not the
same but equivalent, as they differ by the meromorphic function T1T

−1
0 .

Now, we discuss Weil divisors. A cycle in a scheme X is a closed subscheme Z ⊂ X.
Algebraic geometers study them extensively, especially via the so-called Chow groups,
and there are still very important open conjectures on their basic behavior, such as the
Hodge or the Tate conjectures. The simplest objects of study are cycles in codimension
1, and these lead to the notion of Weil divisors.

Definition 6.8. A Weil divisor D =
∑

Y nY Y is a finite sum with integral coefficients
of integral subschemes Y ⊂ X of codimension 1. If nY ≥ 0 for all Y , then we say D is
effective.

We denote the group of Weil divisors by Z1(X). Under a mild assumption in codi-
mension 1, one can attach Weil divisors to Cartier divisors. First, if X has no embedded
points and is regular in codimension 1, i.e., it is R1, then we define a natural group
homomorphism div : K(X)∗ → Z1(X) given as follows: it sends f to the Weil divisor
div(f) =

∑
vY (f)Y , where vY : OX,ηY is the normalized discrete valuation of the local

ring of X at the generic point ηY of the prime divisor Y (recall that regular rings of Krull
dimension 1 are DVR’s!). This sum is finite, because the closed subset of zeros and poles
of f is nowhere dense, and hence it has finitely many generic points and these exhaust
all possible codimension 1 divisors Y for which vY (f) might not vanish. Note that if
f ∈ OX(X) has no poles, then div(f) is effective, and if f ∈ OX(X)∗ is a global unit,
then div(f) vanishes. Now that we have a notion of principal divisors, we can define the
Weil class group Cl(X) as the quotient of Z1(X) by its principal divisors.

More generally, we can upgrade the above construction to a group homomorphism
Div(X) → Z1(X) where a Cartier divisor D is sent to

∑
Y nY vY (D). The valuation of

D at Y can be defined by taking an open ηY ∈ Ui over which D becomes principal with
meromorphic function fi and taking the valuation of the latter (because the transition
functions are units, their valuation vanishes, and the choice of Ui does not matter). It is
clear by construction that we get a homomorphism CaCl(X)→ Cl(X), and consequently
also from the Picard group. We want to finish our treatment of divisors by examining
the difference between these.

Proposition 6.9. If X has no embedded points and is normal, then CaCl(X)→ Cl(X)
is injective. If X is moreover regular, then the same map is an isomorphism.

Proof. If vY (D) vanishes for all D, then the local meromorphic functions are units up
to codimension 2, so they are units everywhere by Hartogs’ theorem. For the bijectivity
when X is regular, consider the ideal sheaf IY attached to the prime divisor Y . Because
X is regular, its local rings are unique factorization domains, so we know that IY is
locally principal. Then we can write IY ∩Ui = fiOUi for some open cover U of X. By
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construction, the quotients fif−1
j have to be units in Uij , so this defines a Cartier divisor

D. Moreover, it is clear that vZ(D) = δY Z for any prime divisor Z, so we get the desired
surjectivity. �

Corollary 6.10. Let k be an algebraically closed field and Pnk be the n-dimensional pro-
jective space over k. Then, the map Z→ Pic(Pnk) given by d 7→ O(d) is an isomorphism.

Proof. Since Pnk is regular, it suffices to calculate its class group. A prime divisor Y in Pnk
corresponds to the vanishing locus V+(P ) of a homogeneous polynomial P of degree d.
But then P/T dn is a meromorphic function on Pnk , which shows that Y has the same class
as dV+(Tn). Now, it follows easily from our example with Cartier divisors that V+(Tn)
corresponds to the line bundle O(1). �

From now on, we work over an algebraically closed field k and smooth connected curves
C over k, i.e., k-smooth and connected of relative dimension 1. The previous corollary
states that Weil divisors are Cartier, so from now on we refer to divisors only, without
making a precise distinction.

Given a divisor D on the curve C, we define its degree, denoted deg(D), as the sum of
all the coefficients vx(D) as x ranges over all closed points of C. For effective divisors,
the degree has a concrete geometric meaning.

Lemma 6.11. Let k be an algebraically closed field and C be a smooth connected k-curve.
Then, we have an equality deg(D) = dimkH

0(D,OD) for any effective divisor D, where
OD is the cokernel of the inclusion OC(−D)→ OC .

Proof. By hypothesis, we have vx(D) ≥ 0 and the ideal sheaf of OD at the point x is
given by the corresponding power of the maximal ideal. Since the local ring OC,x is a
discrete valuation ring with uniformizer tx, we get that OD,x ' k[tx]/t

vx(D)
x and hence

its dimension over k equals precisely vx(D). As the underlying topological space of the
scheme D is discrete, we get the claim by summing over all x. �

Next, we have to understand how divisors pullback and pushforward along finite dom-
inant maps of smooth connected k-curves π : C1 → C2. If D2 =

∑
y∈C2(k) vy(D2)y is a

divisor on C2, then we define its pullback D1 := π∗(D2) as follows: we set vx(D1) =
ex/yvy(D2) with y = f(x) and ex/y = vx(ty) being the ramification degree of OC2,y →
OC1,x. This is compatible with passing to associated line bundles:

Lemma 6.12. Under the above assumptions, we have an isomorphism OC1(D1) '
π∗OC2(D2).

Proof. This is checked easily at the level of principal divisors, as an arbitrary divisor
becomes principal after passing to an open cover. Now, the valuation at x of some
meromorphic function f of C2 after pullback to C1 is equal to its valuation at y = f(x)
multiplied by the ramification index due to the renormalization. �

Just like in algebraic number theory, we can show that
∑

x∈f−1(y) ex/y equals the degree
[k(C1) : k(C2)] of the finite extension k(C1)/k(C2) of function fields. Indeed, the map π
is flat by miracle flatness and thus the Euler characteristic of π∗OC1 is locally constant.
It is easy to see that the latter is given by the sum of the ramification degrees. Hence,
π∗ rescales degrees of divisors by [k(C1) : k(C2)].
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Corollary 6.13. Let k be an algebraically closed field and C be a proper smooth connected
k-curve. If f ∈ H0(C,K∗C) is a non-zero meromorphic function, then we have deg(f)0 =
deg(f)∞ = [k(C) : k(f)].

Proof. The function f defines a finite morphism f : C → P1
k such that k(f) equals the

image of k(t) under f∗. Then, we can write div(t) = 0−∞, and use the equality div(f) =
π∗div(t) = π∗(0)− π∗(∞) to calculate the degrees of the zero and pole divisors. �

Let us explain the relationship between smooth connected k-curves and their function
fields.

Proposition 6.14. The assignment C 7→ k(C) defines an equivalence between the cat-
egory of proper smooth connected k-curves with non-constant maps and the category of
field extensions of k of transcendence degree 1.

Proof. We need to show that the functor is fully faithful. Given an inclusion k(C2) →
k(C1), we can extend it uniquely to a non-constant map C1 → C2 by identifying the
left side with the normalization of C2 in k(C1) and invoking the universal property of
the normalization. For essential surjectivity, we note that any such field K/k contains
k(t), which is the function field of P1

k, and we can construct a proper smooth connected
k-curve C with function field K by taking the normalization of P1

k in K. �

Example 6.15. Let E be an elliptic curve, i.e., a proper smooth connected planar k-
curve of degree 3 (in other words, given by a cubic homogeneous polynomial inside P2).
The set E(k) is endowed with the group law where P +Q+ R = 0 exactly when P , Q,
and R are colinear. We claim that the natural map E(k)→ Pi0(E) given by P 7→ P−∞
for the fixed point at infinity ∞ = [0 : 1 : 0] is a group isomorphism. Indeed, if we let f
be the meromorphic function determined by the line connecting P , Q, and R, then we
see that div(f) = P + Q + R − 3∞, so the group structure is preserved. Also the map
is injective, because P −∞ = div(g) leads to g defining an isomorphism between E and
P1
k, which is not possible (e.g., the genus of E is 1 instead of 0, calculate the H1 of the

structure sheaf or instead the H0 of the canonical sheaf). It is not too hard to show
surjectivity now, because the group law of E(k) allows us to absorb sums of points into
a single one.

We can now approach Riemann–Roch, which gives an expression for the Euler char-
acteristic of any line bundle L on a proper smooth connected k-curve C. Before doing
this, let us make sure we understand how to compute the global sections of OX(D).

Lemma 6.16. For a Cartier divisor on a noetherian scheme X without embedded points,
there is a natural isomorphism between H0(X,OX(D)) and the set of meromorphic func-
tions f on X such that div(f) +D ≥ 0 is effective.

Proof. Consider a global section s : OX → OX(D). Clearly the assertion is preserved
under localizing X and then it glues along open covers thereof. Hence, we may and
do assume that D = div(g) is principal. We get OX(D) = g−1OX , so the image of 1
under s is a meromorphic function f such that gf is regular, i.e., div(f) + div(g) ≥ 0 is
effective. �

Theorem 6.17. Let C be a proper smooth connected k-curve. Then, for every divisor
D on C, we have χ(C,OC(D)) = deg(D) + χ(C,OC).
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Proof. Recall that χ is additive on short exact sequences. First, we take an effective
divisor D ≥ 0 and consider the short exact sequence

0→ OC(−D)→ OC → OD → 0 (6.3)

and this implies the assertion for −D as χ(C,OD) = deg(D) by the previous lemma,
and the fact that D is 0-dimensional as a scheme. Tensoring the above exact sequence
with an arbitrary divisor E, we see that the difference χ(C,O(E)) − χ(C,O(E − D))
equals deg(D) using the triviality of Pic(D) to identify OD(E) ' OD. Now, if E is also
effective, then we get the corresponding assertion for E. Putting everything together, we
get the claim for differences of effective divisors, which clearly covers all of them (think
of Weil divisors). �

While we haven’t yet seen Serre duality, it identifies the k-linear dual of H1(C,OC(D))
with H0(C,OC(−D) ⊗ ωC/k), where ωC/k = Ω1

C/k is the canonical sheaf. We define
the genus g(C) as the dimension of the k-vector space H0(C,ωC/k) and it follows by
Riemann–Roch that deg(KC) = 2g − 2 for any canonical divisor KC , i.e., such that
ωC/k ' OC(KC).

7. Serre duality
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